Application and discussion of various crack closure models to predict fatigue crack growth in 6061-T651 aluminium alloy

Author(s):  
Victor Ribeiro ◽  
José Correia ◽  
Grzegorz Lesiuk ◽  
Aparecido Gonçalves ◽  
Abílio De Jesus ◽  
...  
1994 ◽  
Vol 116 (1) ◽  
pp. 30-35 ◽  
Author(s):  
J. M. Bloom

Current fatigue crack growth procedures in the commercial nuclear industry do not clearly specify how compressive loads are to be handled and, therefore, regulatory agencies usually recommend a conservative approach requiring full consideration of the loads. This paper demonstrates that a more realistic approach to account for compressive loads can be formulated using crack closure concepts. Several empirical plasticity-induced crack closure models were evaluated. An approach in the Section XI ASME Code for tensile loading only has been extended and evaluated for negative R-ratios. However, the paper shows this approach to be overly conservative. The approaches using crack closure models are shown to be more accurate. An analytically based crack closure model, while more complicated, is shown to give a theoretical basis to the empirically derived crack closure models. The paper concludes with a recommendation for modifying the current ASME Code practices consistent with the crack closure models and fatigue crack growth data from negative R-ratio tests.


2014 ◽  
Vol 891-892 ◽  
pp. 93-99 ◽  
Author(s):  
Simon A. Barter ◽  
Madeleine Burchill ◽  
Michael Jones

The corrections incorporated in fatigue crack growth prediction programs for crack closure are usually tested by their ability to predict retardation following an overload and for the accuracy of their prediction lives for long cracks greater than about 1mm. They should, however, be examined on their ability to predict the life of cracks that grow from small sizes, such as small inherent material discontinuities, to failure, which is more typical of service situations and the growth produced by small cycles as well as the larger cycles. To examine the extent of crack closure in aluminium alloy 7050-T7451 and the prediction of that growth, quantitative fractography measurements of short periods of fatigue crack growth produced with a specially engineered spectrum were conducted and are reported here. The spectrum contained bands of constant amplitude loads with diminishing mean stress designed to examine the extent of closure. The quantitative fractography results are compared to predictions by the common analytical programs FASTRAN and AFGROW and further with a basic effective stress intensity calculation method at a crack depth of about 1mm. The results showed that the analytical programs were able to predict the presence of closure; however, the extent of the closure was not accurately predicted.


Sign in / Sign up

Export Citation Format

Share Document