cast aluminium
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 51)

H-INDEX

37
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7898
Author(s):  
Elanghovan Natesan ◽  
Johan Ahlström ◽  
Stefan Eriksson ◽  
Christer Persson

As the electrification of vehicle powertrains takes prominence to meet stringent emission norms, parts of internal combustion engines like cylinder heads are subjected to an increased number of thermal load cycles. The cost-effective design of such structures subjected to cyclic thermo-mechanical loads relies on the development of accurate material models capable of describing the continuum deformation behaviour of the material. This study investigates the effect of temperature on the evolution of flow stress under cyclic loading in A356-T7 + 0.5% Cu cast aluminium alloy commonly used in modern internal combustion engine cylinder heads. The material exhibits peak stress and flow stress asymmetry with the stress response and flow stress of the material under compressive loading higher than under tension. This peak and flow stress asymmetry decrease with an increase in temperature. To compare this stress asymmetry against conventional steel, cyclic strain-controlled fatigue tests are run on fully pearlitic R260 railway steel material. To study the effect of mean strain on the cyclic mean stress evolution and fatigue behaviour of the alloy, tests with tensile and compressive mean strains of +0.2% and −0.2% are compared against fully reversed (Rε = −1) strain-controlled tests. The material exhibits greater stress asymmetry between the peak tensile and peak compressive stresses for the strain-controlled tests with a compressive mean strain than the tests with an identical magnitude tensile mean strain. The material exhibits mean stress relaxation at all temperatures. Reduced durability of the material is observed for the tests with tensile mean strains at lower test temperatures of up to 150 °C. The tensile mean strains at elevated temperatures do not exhibit such a detrimental effect on the endurance limit of the material.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1304
Author(s):  
Moritz Neuser ◽  
Olexandr Grydin ◽  
Anatolii Andreiev ◽  
Mirko Schaper

Implementing the concept of mixed construction in modern automotive engineering requires the joining of sheet metal or extruded profiles with cast components made from different materials. As weight reduction is desired, these cast components are usually made from high-strength aluminium alloys of the Al-Si (Mn, Mg) system, which have limited weldability. The mechanical joinability of the cast components depends on their ductility, which is influenced by the microstructure. High-strength cast aluminium alloys have relatively low ductility, which leads to cracking of the joints. This limits the range of applications for cast aluminium alloys. In this study, an aluminium alloy of the Al-Si system AlSi9 is used to investigate relationships between solidification conditions during the sand casting process, microstructure, mechanical properties, and joinability. The demonstrator is a stepped plate with a minimum thickness of 2.0 mm and a maximum thickness of 4.0 mm, whereas the thickness difference between neighbour steps amounts to 0.5 mm. During casting trials, the solidification rates for different plate steps were measured. The microscopic investigations reveal a correlation between solidification rates and microstructure parameters such as secondary dendrite arm spacing. Furthermore, mechanical properties and the mechanical joinability are investigated.


2021 ◽  
Vol 1157 (1) ◽  
pp. 012005
Author(s):  
M Neuser ◽  
F Kappe ◽  
M Busch ◽  
O Grydin ◽  
M Bobbert ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document