Direct numerical simulation of particle transport by hairpin vortices in a laminar boundary layer

Author(s):  
M. Prevel ◽  
I. Vinkovic ◽  
D. Doppler ◽  
C. Pera ◽  
M. Buffat
2000 ◽  
Vol 403 ◽  
pp. 223-250 ◽  
Author(s):  
M. ALAM ◽  
N. D. SANDHAM

Direct numerical simulation of the incompressible Navier-Stokes equations is used to study flows where laminar boundary-layer separation is followed by turbulent reattachment forming a closed region known as a laminar separation bubble. In the simulations a laminar boundary layer is forced to separate by the action of a suction profile applied as the upper boundary condition. The separated shear layer undergoes transition via oblique modes and Λ-vortex-induced breakdown and reattaches as turbulent flow, slowly recovering to an equilibrium turbulent boundary layer. Compared with classical experiments the computed bubbles may be classified as ‘short’, as the external potential flow is only affected in the immediate vicinity of the bubble. Near reattachment budgets of turbulence kinetic energy are dominated by turbulence events away from the wall. Characteristics of near-wall turbulence only develop several bubble lengths downstream of reattachment. Comparisons are made with two-dimensional simulations which fail to capture many of the detailed features of the full three-dimensional simulations. Stability characteristics of mean flow profiles are computed in the separated flow region for a family of velocity profiles generated using simulation data. Absolute instability is shown to require reverse flows of the order of 15–20%. The three-dimensional bubbles with turbulent reattachment have maximum reverse flows of less than 8% and it is concluded that for these bubbles the basic instability is convective in nature.


Author(s):  
Victor Barcelos Victorino ◽  
Marlon Sproesser Mathias ◽  
Marcello Augusto Faraco de Medeiros

Author(s):  
Richard D. Sandberg ◽  
Richard Pichler ◽  
Liwei Chen ◽  
Roderick Johnstone ◽  
Vittorio Michelassi

Modern low pressure turbines (LPT) feature high pressure ratios and moderate Mach and Reynolds numbers, increasing the possibility of laminar boundary-layer separation on the blades. Upstream disturbances including background turbulence and incoming wakes have a profound effect on the behavior of separation bubbles and the type/location of laminar-turbulent transition and therefore need to be considered in LPT design. URANS are often found inadequate to resolve the complex wake dynamics and impact of these environmental parameters on the boundary layers and may not drive the design to the best aerodynamic efficiency. LES can partly improve the accuracy, but has difficulties in predicting boundary layer transition and capturing the delay of laminar separation with varying inlet turbulence levels. Direct Numerical Simulation (DNS) is able to overcome these limitations but has to date been considered too computationally expensive. Here a novel compressible DNS code is presented and validated, promising to make DNS practical for LPT studies. Also, the sensitivity of wake loss coefficient with respect to freestream turbulence levels below 1% is discussed.


Sign in / Sign up

Export Citation Format

Share Document