scholarly journals Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage

Author(s):  
Rabih M. Al Ghossein ◽  
Mohammad Sharif Hossain ◽  
J.M. Khodadadi
Author(s):  
D. Zhou ◽  
C. Y. Zhao

Phase change materials (PCMs) have been widely used for thermal energy storage systems due to their capability of storing and releasing large amounts of energy with a small volume and a moderate temperature variation. Most PCMs suffer the common problem of low thermal conductivity, being around 0.2 and 0.5 for paraffin and inorganic salts, respectively, which prolongs the charging and discharging period. In an attempt to improve the thermal conductivity of phase change materials, the graphite or metallic matrix is often embedded within PCMs to enhance the heat transfer. This paper presents an experimental study on heat transfer characteristics of PCMs embedded with open-celled metal foams. In this study both paraffin wax and calcium chloride hexahydrate are employed as the heat storage media. The transient heat transfer behavior is measured. Compared to the results of pure PCMs samples, the investigation shows that the additions of metal foams can double the overall heat transfer rate during the melting process. The results of calcium chloride hexahydrate are also compared with those of paraffin wax.


2015 ◽  
Vol 3 (16) ◽  
pp. 8526-8536 ◽  
Author(s):  
Tingting Qian ◽  
Jinhong Li ◽  
Xin Min ◽  
Weimin Guan ◽  
Yong Deng ◽  
...  

The thermal conductivity was 0.82 W m−1 K−1 for 7.2% AgNPs in PEG/diatomite, which was enhanced by 127% compared to PEG/diatomite.


2019 ◽  
Author(s):  
Vinit V. Prabhu ◽  
Ethan Languri ◽  
Kashif Nawaz

Abstract The research on thermal energy storage (TES) systems have received a lot of attention in recent decades for sustainable use of thermal energy in various industrial and residential applications. The existing challenge in designing the TES is the response time of charging and discharging cycles that keeps these systems away from wide utilization in industries. Literature data show that beside the low thermal conductivity of most phase change materials (PCMs) as active media in TES systems, the poor flow distribution may be another factor affecting the response rate. This study aims to considerably reduce the response time by packing the PCMs in a bed of spheres made of high thermal conductivity material. The response rate during the charging cycle is studied numerically by passing hot water at 70 °C over the packed bed of spheres. The numerical analysis is performed using ANSYS Fluent 19. The PCM used in this study is a paraffin and has a melting point of 48 °C. The response rate of the system is studied and it is compared to other similar systems mentioned in literature. The amount of energy storage is also studied by changing the flow rate of water.


2014 ◽  
Vol 7 (3) ◽  
pp. 1185-1192 ◽  
Author(s):  
Hengxing Ji ◽  
Daniel P. Sellan ◽  
Michael T. Pettes ◽  
Xianghua Kong ◽  
Junyi Ji ◽  
...  

Embedding continuous ultrathin-graphite foams (UGFs) with volume fractions as low as 0.8–1.2 vol% in a phase change material (PCM) can increase the effective thermal conductivity by up to 18 times, with negligible change in the melting temperature or mass specific heat of fusion.


Fatty acids are a distinguished category of phase change materials (PCM). However, their inferior thermal conductivity value restricts their potential for thermal energy storage system. Carbonaceous nanomaterials have emerged as promising thermal conductivity enhancer materials for organic PCMs. The present study focuses on preparing a novel PCM nanocomposite comprising of small amount of nanographite (NG) in molten acetamide, an organic PCM, for elevation of the thermal characteristics and examining the trend of the nanocomposite through the course of charging / discharging process. These PCM-nanocomposites are prepared by dispersing NG in molten acetamide with weight fractions of 0.1, 0.2, 0.3, 0.4 and 0.5 %. The scanning electronic microscopic (SEM) analysis was conducted for the characterization of PCM nanocomposite. The energy storage behaviour of the prepared nanocomposites were analyzed with the help of differential scanning calorimeter instruments, which showed that there is no observable variation in the melting point of the nanocomposite, and a decline in the latent heat values. Furthermore, thermal conductivity trend of the nanocomposites caused by NG addition was investigated, which indicated enhancement of thermal conductivity with increasing NG concentration. Further, nanocomposites with a 0.4 wt. % of NG, displayed appreciable increase in rate of heat transfer, reducing melting time and solidification time by 48 and 47 %, respectively. The prepared PCM nanocomposites displayed superior heat transfer trend, permitting substantial thermal energy storage.


Sign in / Sign up

Export Citation Format

Share Document