Temperature Dependent
Recently Published Documents


TOTAL DOCUMENTS

20850
(FIVE YEARS 6069)

H-INDEX

155
(FIVE YEARS 42)

Author(s):  
Mousumi Mallick ◽  
Biplab Hazra ◽  
Swapan Kumar Mitra ◽  
Debasish Basak ◽  
Bijay Kumar Show ◽  
...  

Author(s):  
Yixin Liu ◽  
Han Zhang ◽  
Xiaowen Han ◽  
Teng Wang ◽  
Lingling Wang ◽  
...  

Abstract High quality superconducting thin films are the basis for the application of superconducting devices. Here we report the fllm growth and superconducting properties of the Ta films. The films were grown by the pulsed laser deposition technique on the α-Al2O3 substrates. It is found that, with the increase of the fllm thickness from 20 nm to 61 nm, both the superconducting transition temperature Tc and residual resistance ratio RRR display an upward trend, while the upper critical field decreases monotonously in a wide temperature region. A clear anisotropic behavior is revealed by comparing the upper critical fields with two difierent orientations (H ⊥ film and H // film). The anisotropy parameter Γ is found to be as high as 20 for the sample with the thickness of 20 nm. The systematical evolution from two- to three-dimensional features for the superconductivity with the increase of fllm thickness is observed in the temperature dependent upper critical fleld data. Moreover, the vortex liquid region tends to expand with the increase of the fllm thickness.


2022 ◽  
Author(s):  
Nalin Vilochan Mishra ◽  
Ravi Solanki ◽  
Harshit Kansal ◽  
Aditya S Medury

<div>Ultra-thin body (UTB) devices are being used in many electronic applications operating over a wide range of temperatures. The electrostatics of these devices depends on the band structure of the channel material, which varies with temperature as well as channel thickness. The semi-empirical tight binding (TB) approach is widely used for calculating channel thickness dependent band structure of any material, at a particular temperature, where TB parameters are defined. For elementary semiconductors like Si, Ge and compound semiconductors like GaAs, these TB parameters are generally defined at only 0 K and 300 K. This limits the ability of the TB approach to simulate the electrostatics of these devices at any other intermediate temperatures.</div><div>In this work, we analyze the variation of band structure for Si, Ge and GaAs over different channel thicknesses at 0 K and 300 K (for which TB parameters are available), and show that the band curvature at the band minima has minor variation with temperature, whereas the change of band gap significantly affects the channel electrostatics. Based on this finding, we propose an approach to simulate the electrostatics of UTB devices, at any temperature between 0 K and 300 K, using TB parameters defined at 0 K, along with a suitable channel thickness and temperature dependent band gap correction. </div>


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 144
Author(s):  
Debashree Chatterjee ◽  
Alexandra Tauzin ◽  
Annemarie Laumaea ◽  
Shang Yu Gong ◽  
Yuxia Bo ◽  
...  

The rapid emergence of SARS-CoV-2 variants is fueling the recent waves of the COVID-19 pandemic. Here, we assessed ACE2 binding and antigenicity of Mu (B.1.621) and A.2.5 Spikes. Both these variants carry some mutations shared by other emerging variants. Some of the pivotal mutations such as N501Y and E484K in the receptor-binding domain (RBD) detected in B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) are now present within the Mu variant. Similarly, the L452R mutation of B.1.617.2 (Delta) variant is present in A.2.5. In this study, we observed that these Spike variants bound better to the ACE2 receptor in a temperature-dependent manner. Pseudoviral particles bearing the Spike of Mu were similarly neutralized by plasma from vaccinated individuals than those carrying the Beta (B.1.351) and Delta (B.1.617.2) Spikes. Altogether, our results indicate the importance of measuring critical parameters such as ACE2 interaction, plasma recognition and neutralization ability of each emerging variant.


2022 ◽  
Author(s):  
Nalin Vilochan Mishra ◽  
Ravi Solanki ◽  
Harshit Kansal ◽  
Aditya S Medury

<div>Ultra-thin body (UTB) devices are being used in many electronic applications operating over a wide range of temperatures. The electrostatics of these devices depends on the band structure of the channel material, which varies with temperature as well as channel thickness. The semi-empirical tight binding (TB) approach is widely used for calculating channel thickness dependent band structure of any material, at a particular temperature, where TB parameters are defined. For elementary semiconductors like Si, Ge and compound semiconductors like GaAs, these TB parameters are generally defined at only 0 K and 300 K. This limits the ability of the TB approach to simulate the electrostatics of these devices at any other intermediate temperatures.</div><div>In this work, we analyze the variation of band structure for Si, Ge and GaAs over different channel thicknesses at 0 K and 300 K (for which TB parameters are available), and show that the band curvature at the band minima has minor variation with temperature, whereas the change of band gap significantly affects the channel electrostatics. Based on this finding, we propose an approach to simulate the electrostatics of UTB devices, at any temperature between 0 K and 300 K, using TB parameters defined at 0 K, along with a suitable channel thickness and temperature dependent band gap correction. </div>


2022 ◽  
Vol 8 (2) ◽  
Author(s):  
Huijuan Li ◽  
Joerg Hermann ◽  
Lifei Zhang

Temperature-dependent trace element fractionation during melting of subducted slab can explain the composition of arc magmas.


2022 ◽  
Author(s):  
Muhammad Amin Padhiar ◽  
Minqiang Wang ◽  
Yongqiang Ji ◽  
Zhi Yang ◽  
Arshad Saleem Bhatti

Abstract In recent years, significant progress has been made in the red and green perovskite quantum dots (PQDs) based light-emitting devices. However, a scarcity of blue-emitting devices that are extremely efficient precludes their research and development for optoelectronic applications. Taking advantage of tunable bandgaps of PQDs over the entire visible spectrum, herein we tune optical properties of CSPbBr3 by mixing Nd3+ trivalent lanthanide halide cations for blue light-emitting devices. The CsPbBr3 PQDs doped with Nd3+ trivalent lanthanide halide cations emitted strong photoemission from green into the blue region. By adjusting their doping concentration, a tunable wavelength from (515 nm) to (450 nm) was achieved with FWHM from (37.83 nm) to (16.6 nm). We simultaneously observed PL linewidth broadening thermal quenching of PL and the blue shift of the optical bandgap from temperature-dependent PL studies. The Nd3+ cations into CsPbBr3 PQDs more efficiently reduced non-radiative recombination. As a result of the efficient removal of defects from PQDs, the photoluminescence quantum yield (PLQY) has been significantly increased to 91% in the blue-emitting region. Significantly, Nd3+ PQDs exhibit excellent long-term stability against the external environment, including water, temperature, and ultraviolet light irradiation. Moreover, we successfully transformed Nd3+ doped PQDs into highly fluorescent nanocomposites. Incorporating these findings, we fabricate and test a stable blue light-emitting LED with EL emission at (462 nm), (475 nm), and successfully produce white light emission from Nd3+ doped nanocomposites with a CIE at (0.32, 0.34), respectively. The findings imply that low-cost Nd3+ doped perovskites may be attractive as light converters in LCDs with a broad color gamut.


Sign in / Sign up

Export Citation Format

Share Document