Flow and heat transfer characteristics of micro pin-fins under jet impingement arrays

Author(s):  
Xunfeng Lu ◽  
Weihong Li ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang ◽  
...  
Author(s):  
Gaoliang Liao ◽  
Xinjun Wang ◽  
Xiaowei Bai ◽  
Ding Zhu ◽  
Jinling Yao

By using the CFX software, the three-dimensional flow and heat transfer characteristics in the cooling duct with pin-fin in the blade trailing edge were numerically simulated. The effects of pin-fin arrangements, Reynolds number, steam superheat degrees, streamwise pin density and convergence angle of the wedge duct on the flow and heat transfer characteristics were analysed. The results show that the Nusselt number on the endwall and pin-fin surfaces as well as the pin-fin row averaged Nusselt number increase with the increasing of Reynolds number, while it decreased with the with the increasing of X/D. The pressure drop increases with the increasing of Reynolds number while decreases with the increasing of X/D in the wedge duct. The degree of superheat has little effect on the pressure loss in the wedge duct. A comprehensive analysis and comparison show that the highest thermal performance is reached in the wedge duct when the value of X/D is 1.5.


Author(s):  
Xiaoxing Feng ◽  
Shuqing Tian ◽  
Jiangtao Bai ◽  
Hong Zhang ◽  
Kefei Wang ◽  
...  

In the gas turbine blade cooling design, impingement insert and pin-fins arranged as an array in the trailing region are usually used to enhance the heat transfer. To investigate the heat transfer characteristics of the integrated impingement and the pin-fin cooling configuration in wedge channels, the numerical simulations with k-ε turbulence model and scalable wall function algorithm are carried out using a commercial CFD code. To reveal the factors that enhance the heat transfer in the blade internal trailing channel, heat transfer characteristics of pin-fins with impingement slot are compared with that without impingement slot. The effect of the ratio of jet impingement distance to pin-fin diameter on the heat transfer is analyzed. The convergence angle of the channel is studied. The heat transfer characteristics of the integrated impingement and pin-fin cooling configuration in the wedge channels are evaluated. The results reveal that the impinging jet enhances largely the heat transfer in the first two rows. In the studied range of L/D = 0.5∼2.0, the heat transfer of the pin-fins with impingement is about 20%∼25% higher than that without impingement. The averaged Nusselt numbers on the endwall surface, the pin surface, and the overall surfaces respectively in the wedge duct increase linearly with the increase of Reynolds number, decrease gradually with the increase of the impingement distance and increase with the increase of the convergence angle.


Author(s):  
N. Satish ◽  
K. Venkatasubbaiah

The analysis of fluid flow and heat transfer characteristics of double turbulent jet flow impinging on a stationary and moving plate has been numerically studied. Unsteady-state two-dimensional incompressible turbulent forced convection flow is considered for present analysis. Turbulence is modelled by the Reynolds-averaged Navier–Stokes (RANS) equation with the k − ε model and enhanced wall treatment. The governing equations are solved using a finite volume based commercial solver. The results for the effect of single jet and double jet, jet Reynolds number, plate velocity, location, and center spacing between the two jets on flow and heat transfer characteristics are reported. The results show that the enhancement of heat transfer is 32.70% for the double jet compared with the single jet impingement on a stationary plate. As significant enhancement of heat transfer is observed with an increase in the second jet Reynolds number and plate velocity. The results show that the size and shape of the recirculation zones between jets are greatly altered with respect to spacing between the jets to the plate and the center distance between the jets. The results show that the enhancement of heat transfer is 37.3% for moving plate velocity due to a decrease in the spacing between the jets and the plate from 6 to 4. Results show that the local peak Nusselt number is influenced by the plate velocity. These results are validated by experimental and numerical results available in the literature.


Sign in / Sign up

Export Citation Format

Share Document