pin fin
Recently Published Documents





2022 ◽  
Vol 14 (2) ◽  
pp. 835
Hafiz Muhammad Habib ◽  
Hafiz Muhammad Ali ◽  
Muhammad Usman

Condensers are an integral part of air conditioning systems. The thermal efficiency of condensers solely depends on the rate of heat transfer from the cooling medium. Fin tubes are extensively used for heat transfer applications due to their enhanced heat transfer capabilities. Fins provide appreciable drainage because surface tension produces pressure gradients. Much research, contributed by several scientists, has focused on adjusting parameters, such as fin design, flow rates and retention angles. In this study, a setup with an observing hole was used to inspect the influence on retention angle of adjusting the flow rates of the fluid. The increase in retention angle was examined using several velocities and concentration mixtures. Pin-fin tubes were used to obtain coherent results using a photographic method. The experimental setup was designed to monitor the movement of fluid through the apparatus. The velocity was varied using dampers and visibility was enhanced using dyes. Photographs were taken at 20 m/s velocities after every 20 s. and 0.1% concentration and the flooding point observed. The experimental results were verified by standard observation which showed little variation at lower velocity. For water/water-propanol mixtures, a vapor velocity of 12 m/s and concentration ratio of 0.04% was the optimal combination to achieve useful improvement in retention angle. With increase of propanol from 0% to 0.04%, the increase in retention angle was greater compared to 0.04% to 0.1%. For velocities ranging from 0 to 12 m/s, the increase in retention angle was significant. A sharp change was observed for concentration ratios ranging from 0.01% to 0.05% compared to 0.05% to 0.1%.

2022 ◽  
pp. 1-28
Ce Liang ◽  
Yu Rao ◽  
Jianian Chen ◽  
Peng Zhang

Abstract Experiments and numerical simulations under stationary and rotating conditions have been conducted to investigate turbulent flow and heat transfer characteristics of innovative guiding pin fin arrays in a wedge-shaped channel, which models the internal cooling passages for gas turbine blade trailing edge. The Reynolds number range is 10,000-80,000, and the inlet rotation number range is 0-0.46. With the increase of Reynolds numbers, the enhancement of heat transfer performance with guiding pin fin arrays is significantly higher than that with conventional circular pin fin arrays. At the highest Reynolds number of Re=80,000, the overall Nusselt number of the channel with guiding pin fin arrays is about 33.7% higher than that of the channel with circular pin fin arrays under the stationary condition, and is about 23.0% higher than the latter under the rotating conditions. At the highest inlet rotation number of Ro=0.46, the heat transfer difference between the trailing side and leading side of the channel is significantly lower with the guiding pin fin arrays. Both the experiments and numerical simulations indicate that the heat transfer uniformity and enhancement of the channel endwall is significantly improved by the guiding pin fin arrays under stationary and rotating conditions, which provide more reasonable flow distribution in the wedge-shaped channel, and can further produce obviously improved heat transfer in the tip region for the trailing edge internal cooling channel.

Koji Shimoyama ◽  
Atsuki Komiya

AbstractAdditive manufacturing (AM) has an affinity with topology optimization to think of various designs with complex structures. Hence, this paper aims to optimize the design of a lattice-structured heat sink, which can be manufactured by AM. The design objectives are to maximize the thermal performance of convective heat transfer in natural convection simulated by computational fluid dynamics (CFD) and to minimize the material cost required for AM process at the same time. The lattice structure is represented as a node/edge system via graph theory with a moderate number of design variables. Bayesian optimization, which employs the non-dominated sorting genetic algorithm II and the Kriging surrogate model, is conducted to search for better designs with the minimum CFD cost. The present topology optimization successfully finds better lattice-structured heat sink designs than a reference fin-structured design regarding thermal performance and material cost. Also, several optimized lattice-structured designs outperform reference pin-fin-structured designs regarding thermal performance though the pin-fin structure is still advantageous for a material cost-oriented design. This paper also discusses the flow mechanism observed in the heat sink to explain how the optimized heat sink structure satisfies the competing design objectives simultaneously.

Sonia Nawaz ◽  
Hamza Babar ◽  
Hafiz Muhammad Ali ◽  
Muhammad Usman Sajid ◽  
Muhammad Mansoor Janjua ◽  

2021 ◽  
Pratik S. Bhansali ◽  
Kishore Ranganath Ramakrishnan ◽  
Srinath V. Ekkad

Abstract Many engineering applications consist of rotating components which experience high heat load. For instance, applications like the gas turbine engine consist of rotating disks and the study of heat transfer over such rotating surfaces is of particular interest. In the case of gas turbines, the disk also needs to be protected from the ingress of hot turbine gases caused by the low pressure region created due to the radially outward pumping of fluid close to the rotating surface. Present experimental study investigates the effects of introducing pin-fins on heat transfer over surface of a rotating gas turbine disk. Experiments were conducted at rotational Reynolds numbers (ReR) of 5487 - 12803 and jet Reynolds numbers (Re) of 5000 - 18000, nozzle to target spacing (z/d = 2 - 6), impingement eccentricities (e = 0 -0.67), angles of impingement (0°-20°), and the pin fin height (Hf = 3.05mm - 19.05mm). Steady state temperature measurements were taken using thermocouples embedded in the disk, and area average Nusselt number (Nu) was calculated. The results have been compared with those for a smooth aluminum disk. Nu was significantly enhanced by the presence of pin-fins. The enhancement was higher for lower Re and the maximum enhancement was found to be 3.9 times that of a smooth disk for Re = 5000. Qualitative visualization of flow field has been performed for smooth and the pin-fin case using the commercial simulation package Ansys Fluent to further understand the flow features that result in the enhancement.

2021 ◽  
Vol 12 (1) ◽  
pp. 30
Waseem Amjad ◽  
Adil Nawaz ◽  
Anjum Munir ◽  
Faisal Mahmood

The heat extraction from and cooling of computer microprocessors are challenging tasks in the modern era. Previously, the microprocessors were usually cooled by air, but now industry is shifting towards using nanofluids, as their properties are more thermo-physically stable. The experimental and numerical studies have revealed that the rate of heat transfer depends both on the thermal characteristics of the coolant and the geometry of the heat sink. For optimized results, it is recommended to analyze the combined effect of nanofluids and the geometry of the heat sink. Mini-channel heat sinks in combination with a nanofluid offered an excellent rate of heat transfer. However, passing nanofluids continuously through the system causes various problems over time; for example, the thermal stresses on the components are increased, which may lead to wear and tear of the system. In this study, a numerical investigation of mini-channel heat sinks was conducted through thermal-FSI. A numerical model was established with airfoil and Savonius pin-fin mini channel heat sinks, and they were analyzed at different flow rates from 0.25 LPM to 0.75 LPM with an increment of 0.25 LPM with different fluids, i.e., water, Al2O3–H2O, and Fe2O3–H2O nanofluids, varying their volumetric concentration. The minimum stresses were obtained while increasing the temperature drop and decreasing the pressure drop. The thermal stresses were calculated using the thermal-FSI technique and were found to be in the threshold range, and hence the material was within the yield limit at 0.75 LPM when using the Fe2O3-H2O Nanofluid at a 0° angle using the Savonius heat sink.

Sign in / Sign up

Export Citation Format

Share Document