Experimental investigation of high temperature thermal contact resistance of thin disk samples using infrared camera in vacuum condition

Author(s):  
Mengjun Chen ◽  
Qiang Li ◽  
Ping Zhang
Small ◽  
2021 ◽  
pp. 2102128
Author(s):  
Taehun Kim ◽  
Seongkyun Kim ◽  
Eungchul Kim ◽  
Taesung Kim ◽  
Jungwan Cho ◽  
...  

2000 ◽  
Author(s):  
Xiao Ma ◽  
Jamil A. Khan ◽  
Curtis A. Rhodes ◽  
Allen Smith ◽  
L. Larry Hamm

Abstract In a proposed nuclear application (production of Tritium using an accelerator, Accelerator Production of Tritium (APT)) lead is proposed to be used as a shield in the blanket module. This lead will be encased in aluminum cladding. The energy transfer rate from the lead to the cooling water will be a function of the thermal contact resistance (TCR) between lead and aluminum. Presently, data for contact resistance for this application does not exists in the literature. An experimental investigation has been conducted to determine the thermal contact resistance between lead and aluminum in vacuum. In this study we investigate the effect of pressure, surface roughness and interface temperature on the contact resistance. The experimentally determined range of contact resistance was found to be from 3.74×10−4K-m2/W to 11.45×10−4K-m2/W at 100°C∼200°C under 120∼370psi (0.827∼2.551MPa). The contact resistance increases to 168×10−4K-m2/W at small external pressure of 2.0∼3.9psi (0.013∼0.027MPa). The contact resistance decreases with increasing in contact pressure. Interface temperature and surface roughness do not affect the contact resistance significantly. There is a slight increase in contact conductance with increasing temperature. The experimental results provide contact resistance data, which should be a good reference for the APT design evaluation.


Sign in / Sign up

Export Citation Format

Share Document