thermal contact resistance
Recently Published Documents


TOTAL DOCUMENTS

665
(FIVE YEARS 108)

H-INDEX

39
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Vaibhav Purwar ◽  
Rajeev Gupta ◽  
Pramod Kumar Tiwari ◽  
Sarvesh Dubey

Abstract Dielectric Pocket Double-Gate-All-Around (DP-DGAA) MOSFETs are one of the preferred choices for ULSI applications because of significantly low off-current, reduced power dissipation, and high immunity to short channel effect. However, DP-DGAA MOSFETs suffer from self-heating owing to the unavailability of proper heat take-out paths. In this paper, the electrothermal (ET) simulations have been performed with hydrodynamic and thermodynamic transport models to analyze the self-heating effects (SHEs) in DP-DGAA MOSFETs. The electrothermal characteristics against various device parameters such as spacer length, device thickness, thermal contact resistance, and drain voltage have been investigated. The effect of SHE on the drive current has also been evaluated. Further, the impact of thermal contact resistance and ambient temperature variations of the device on SHE and thermal noise have been analyzed using Sentaurus TCAD simulator.


2021 ◽  
Vol 8 (1) ◽  
pp. 18
Author(s):  
Takuya Ishizaki ◽  
Ai Ueno ◽  
Hosei Nagano

This paper proposes a new thermal contact resistance measurement method using lock-in thermography. Using the lock-in thermography with an infrared microscope, the local temperature behavior in the frequency domain across the contact interface was visualized in microscale. Additionally, a new thermal contact resistance measurement principle was constructed considering the superimposition of the reflected and transmitted temperature wave at the boundary and taking into account the intensity distribution of the heating laser as the gaussian distribution, and the specific geometrical condition of the laminated plate sample. As a result of the experiments, the one-dimensional distribution of the thermal contact resistance was obtained along the contact interface from the analysis of the phase lag.


2021 ◽  
Author(s):  
Lucas Arrivo ◽  
Steven Schon ◽  
Aaron P. Wemhoff

Abstract Data centers housing high performance computing equipment have large and growing rack densities, which pushes the limits of traditional air cooling technologies because of limited heat transfer coefficients. Therefore, on-chip cooling using so-called cold plates is emerging as a necessary cooling option for high-density electronics. The use of mini-channels or pins fins to enhance internal heat transfer area inside cold plates requires extensive micro-machining that is relatively time consuming and expensive for mass production. As an alternative approach, inserting and bonding pre-manufactured metal foams into hollow bodies are explored as a potentially inexpensive means to enhance the interior heat transfer area of cold plates. One key aspect of the performance of metal foams in cold plates is the thermal contact resistance in the bonding between the foam and the substrate. This project predicts the contact resistance using measurements of different foam types (pure Cu and Cu with oxide), porosities (63%, 80%, 93%, and 95%) and thicknesses (4 mm, 8 mm, and 10 mm). These measurements are carried out with and without the use of thermal interface material (TIM) pads. A theory is proposed and implemented to estimate the contact and foam thermal resistances, but further work is needed to gain confidence in the results. Observations suggest that different thermal behavior is seen for the Cu foams compared to the Cu with oxide foams, and that the use of TIM pads can achieve 10x to 40x reduction in overall thermal resistance for highly porous foams bonded on Cu substrates.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5655
Author(s):  
Cezary Kolmasiak ◽  
Vazgen Bagdasaryan ◽  
Tomasz Wyleciał ◽  
Marek Gała

Bundles of steel bars, besides metal foams, are an example of cellular solids. Such bundles constitute a charge during the heat treatment of bars. The paper presents a mathematical model of transient heat transfer in a bundle of rectangular steel bars based on the energy balance method. The key element of this model is the procedure of determining the effective thermal conductivity using the electrical analogy. Different mechanisms of heat transfer occurring within the analysed medium (conduction in steel and contact conduction) are assigned corresponding thermal resistances. The discussed procedure involves expressing these resistances with the use of arithmetic relationships describing their changes in the temperature function. Thermal contact resistance has been described with the use of the relationships determined experimentally. As a result of the performed calculations, the influence of contact conduction between the adjacent bars and bundle arrangement on its heating time was established. The results of the calculations show that the heating time of bundles can be lowered by 5–40% as a result of a decrease in the thermal contact resistance. This effect depends on the bar size and bundle arrangement. From the practical point of view, the analysed problem is connected with the optimization of the heat treatment processes of steel bars.


2021 ◽  
Vol 7 (9) ◽  
pp. 12-26
Author(s):  
Yu. Ismanov ◽  
N. Niyazov ◽  
N. Dzhamankyzov

The article discusses a mathematical model of a hybrid system that combines photovoltaic and thermoelectric methods for converting concentrated solar energy into electrical energy. The specified mathematical model makes it possible to determine the temperatures of the photovoltaic module, as well as the temperature of the electrodes of the thermoelectric generator module. Optimal operating conditions have been determined for the hybrid system, taking into account the thermal contact resistance at the hot and cold sides of the thermoelectric generator. The simulation proceeded from the fact that only part of the absorbed solar radiation is converted into electricity due to the photoelectric effect, some part is lost due to radiation and convection from the upper surface of the photovoltaic module into the environment, and the rest is transferred to a thermoelectric generator connected to the lower part. photovoltaic module. A thermoelectric generator converts some of the thermal energy it receives from the photovoltaic module into electricity through the Seebeck effect, but most of it goes to the cooling system. The conversion of heat into electrical energy was based on the well-known Seebeck and Peltier effects. Along with these effects, such effects were taken into account as the formation of Joule heat due to the presence of electric current in the thermoelectric generator, Fourier thermal conductivity, as a consequence of the appearance of a temperature gradient in the transitions of a thermoelectric generator and Thomson heat, which arises both due to the presence of a temperature gradient, and electric current. The resulting model of the hybrid system makes it possible to study the effect of changing the temperature difference between the hot and cold electrodes of the thermoelectric generator and the resistance of the external circuit on the performance of the hybrid system. The model also allows the determination of the optimal operating conditions for the hybrid system, taking into account the thermal contact resistance on the hot and cold sides of the thermoelectric generator.


Sign in / Sign up

Export Citation Format

Share Document