Acquisition of kHz-frequency two-dimensional surface temperature field using phosphor thermometry and proper orthogonal decomposition assisted long short-term memory neural networks

Author(s):  
Tao Cai ◽  
Zhiwen Deng ◽  
Yoonseong Park ◽  
Shabnam Mohammadshahi ◽  
Yingzheng Liu ◽  
...  
Author(s):  
Funa Zhou ◽  
Zhiqiang Zhang ◽  
Danmin Chen

Analysis of one-dimensional vibration signals is the most common method used for safety analysis and health monitoring of rotary machines. How to effectively extract features involved in one-dimensional sequence data is crucial for the accuracy of real-time fault diagnosis. This article aims to develop more effective means of extracting useful features potentially involved in one-dimensional vibration signals. First, an improved parallel long short-term memory called parallel long short-term memory with peephole is designed by adding a peephole connection before each forget gate to prevent useless information transferring in the cell. It can not only solve the memory bottleneck problem of traditional long short-term memory for long sequence but also can make full use of all possible information helpful for feature extraction. Second, a fusion network with new training mechanism is designed to fuse features extracted from parallel long short-term memory with peephole and convolutional neural network, respectively. The fusion network can incorporate two-dimensional screenshot image into comprehensive feature extraction. It can provide more accurate fault diagnosis result since two-dimensional screenshot image is another form of expression for one-dimensional vibration sequence involving additional trend and locality information. Finally, real-time two-dimensional screenshot image is fed into convolutional neural network to secure a real-time online diagnosis which is the primary requirement of the engineers in health monitoring. Validity of the proposed method is verified by fault diagnosis for rolling bearing and gearbox.


2020 ◽  
Author(s):  
Abdolreza Nazemi ◽  
Johannes Jakubik ◽  
Andreas Geyer-Schulz ◽  
Frank J. Fabozzi

Sign in / Sign up

Export Citation Format

Share Document