memory network
Recently Published Documents





2022 ◽  
Vol 40 (2) ◽  
pp. 1-28
Nengjun Zhu ◽  
Jian Cao ◽  
Xinjiang Lu ◽  
Hui Xiong

A session-based recommender system (SBRS) captures users’ evolving behaviors and recommends the next item by profiling users in terms of items in a session. User intent and user preference are two factors affecting his (her) decisions. Specifically, the former narrows the selection scope to some item types, while the latter helps to compare items of the same type. Most SBRSs assume one arbitrary user intent dominates a session when making a recommendation. However, this oversimplifies the reality that a session may involve multiple types of items conforming to different intents. In current SBRSs, items conforming to different user intents have cross-interference in profiling users for whom only one user intent is considered. Explicitly identifying and differentiating items conforming to various user intents can address this issue and model rich contextual information of a session. To this end, we design a framework modeling user intent and preference explicitly, which empowers the two factors to play their distinctive roles. Accordingly, we propose a key-array memory network (KA-MemNN) with a hierarchical intent tree to model coarse-to-fine user intents. The two-layer weighting unit (TLWU) in KA-MemNN detects user intents and generates intent-specific user profiles. Furthermore, the hierarchical semantic component (HSC) integrates multiple sets of intent-specific user profiles along with different user intent distributions to model a multi-intent user profile. The experimental results on real-world datasets demonstrate the superiority of KA-MemNN over selected state-of-the-art methods.

Ahmed Nasser ◽  
Huthaifa AL-Khazraji

<p>Predictive maintenance (PdM) is a successful strategy used to reduce cost by minimizing the breakdown stoppages and production loss. The massive amount of data that results from the integration between the physical and digital systems of the production process makes it possible for deep learning (DL) algorithms to be applied and utilized for fault prediction and diagnosis. This paper presents a hybrid convolutional neural network based and long short-term memory network (CNN-LSTM) approach to a predictive maintenance problem. The proposed CNN-LSTM approach enhances the predictive accuracy and also reduces the complexity of the model. To evaluate the proposed model, two comparisons with regular LSTM and gradient boosting decision tree (GBDT) methods using a freely available dataset have been made. The PdM model based on CNN-LSTM method demonstrates better prediction accuracy compared to the regular LSTM, where the average F-Score increases form 93.34% in the case of regular LSTM to 97.48% for the proposed CNN-LSTM. Compared to the related works the proposed hybrid CNN-LSTM PdM approach achieved better results in term of accuracy.</p>

Anuradhi Welhenge ◽  
Attaphongse Taparugssanagorn

Continuous measurement of the Blood Pressure (BP) is important in hypertensive patientsand elderly population. Traditional cuff based methods are difficult to use since it is uncomfortable towear a cuff throughout the day. A more suitable method is to estimate the BP using the Photoplethysmography(PPG) signal. However, it is difficult to estimate a BP when the PPG is corrupted withMotion Artifacts (MAs). In this paper, Long Short Term Memory (LSTM) an extension of RecurrentNeural Networks (RNN) is used used to improve the accuracy of the estimation of the BP from thecorrupted PPG. It shows that an accuracy of 97.86 is achieved.

2022 ◽  
Vol 9 (1) ◽  
Marcos Fabietti ◽  
Mufti Mahmud ◽  
Ahmad Lotfi

AbstractAcquisition of neuronal signals involves a wide range of devices with specific electrical properties. Combined with other physiological sources within the body, the signals sensed by the devices are often distorted. Sometimes these distortions are visually identifiable, other times, they overlay with the signal characteristics making them very difficult to detect. To remove these distortions, the recordings are visually inspected and manually processed. However, this manual annotation process is time-consuming and automatic computational methods are needed to identify and remove these artefacts. Most of the existing artefact removal approaches rely on additional information from other recorded channels and fail when global artefacts are present or the affected channels constitute the majority of the recording system. Addressing this issue, this paper reports a novel channel-independent machine learning model to accurately identify and replace the artefactual segments present in the signals. Discarding these artifactual segments by the existing approaches causes discontinuities in the reproduced signals which may introduce errors in subsequent analyses. To avoid this, the proposed method predicts multiple values of the artefactual region using long–short term memory network to recreate the temporal and spectral properties of the recorded signal. The method has been tested on two open-access data sets and incorporated into the open-access SANTIA (SigMate Advanced: a Novel Tool for Identification of Artefacts in Neuronal Signals) toolbox for community use.

Sign in / Sign up

Export Citation Format

Share Document