Hydrogen pumping effect induced by fuel starvation in a single cell of a PEM fuel cell stack at galvanostatic operation

2012 ◽  
Vol 37 (19) ◽  
pp. 14439-14453 ◽  
Author(s):  
Xiao-Guang Yang ◽  
Qiang Ye ◽  
Ping Cheng
Author(s):  
N. V. Dale ◽  
M. D. Mann ◽  
H. Salehfar ◽  
A. M. Dhirde ◽  
T. Han

This paper presents the ac impedance study and analysis of a proton exchange membrane (PEM) fuel cell operated under various loading conditions. Ballard’s 1.2 kW Nexa™ fuel cell used for this study is integrated with a control system. The PEM fuel cell stack was operated using room air and pure hydrogen (99.995%) as input. Impedance data were collected for the fuel cell to study the behavior of the stack and groups of cells under various loads. Single cell impedance analysis was also performed for individual cells placed at different locations in the stack. The ac impedance analysis, also known as electrochemical impedance analysis, showed low frequency inductive effects and mass transport losses due to liquid water accumulation at high current densities. Results show that the stack run time to achieve steady state for impedance measurements is important. Using impedance plots, the average Ohmic resistance for the whole stack was estimated to be 41 mΩ, the same value obtained when summing the resistance value of all individual cells. Impedance analysis for groups of cells at different locations in the stack shows changes in both polarization resistance and capacitive component only in the low frequency region. At high frequencies, single cell inductive and capacitive behavior varied as a function of location in the stack. The effects of artifacts on the high frequency loop and on the high and low frequency intercept loops are also discussed.


2008 ◽  
Vol 1 (06) ◽  
pp. 329-334
Author(s):  
S. Rabih ◽  
C. Turpin ◽  
S. Astier

2014 ◽  
Vol 47 (3) ◽  
pp. 11482-11487 ◽  
Author(s):  
T. Hamaz ◽  
C. Cadet ◽  
F. Druart ◽  
G. Cauffet

Author(s):  
Samuel Simon Araya ◽  
Søren Juhl Andreasen ◽  
Søren Knudsen Kær

As fuel cells are increasingly commercialized for various applications, harmonized and industry-relevant test procedures are necessary to benchmark tests and to ensure comparability of stack performance results from different parties. This paper reports the results of parametric sensitivity tests performed based on test procedures proposed by a European project, Stack-Test. The sensitivity of a Nafion-based low temperature PEMFC stack’s performance to parametric changes was the main objective of the tests. Four crucial parameters for fuel cell operation were chosen; relative humidity, temperature, pressure, and stoichiometry at varying current density. Furthermore, procedures for polarization curve recording were also tested both in ascending and descending current directions.


2021 ◽  
Vol MA2021-02 (37) ◽  
pp. 1104-1104
Author(s):  
Ariel Chiche ◽  
Göran Lindbergh ◽  
Ivan Stenius ◽  
Carina Lagergren

2006 ◽  
Vol 161 (2) ◽  
pp. 929-937 ◽  
Author(s):  
Xiaozi Yuan ◽  
Jian Colin Sun ◽  
Haijiang Wang ◽  
Jiujun Zhang

2019 ◽  
Vol 25 (1) ◽  
pp. 733-745 ◽  
Author(s):  
Maria Pérez-Page ◽  
Valentin Pérez-Herranz

Sign in / Sign up

Export Citation Format

Share Document