scholarly journals Brain-inspired computational paradigm dedicated to fault diagnosis of PEM fuel cell stack

2017 ◽  
Vol 42 (8) ◽  
pp. 5410-5425 ◽  
Author(s):  
Zhixue Zheng ◽  
Simon Morando ◽  
Marie-Cécile Pera ◽  
Daniel Hissel ◽  
Laurent Larger ◽  
...  
2008 ◽  
Vol 1 (06) ◽  
pp. 329-334
Author(s):  
S. Rabih ◽  
C. Turpin ◽  
S. Astier

2014 ◽  
Vol 47 (3) ◽  
pp. 11482-11487 ◽  
Author(s):  
T. Hamaz ◽  
C. Cadet ◽  
F. Druart ◽  
G. Cauffet

Author(s):  
Samuel Simon Araya ◽  
Søren Juhl Andreasen ◽  
Søren Knudsen Kær

As fuel cells are increasingly commercialized for various applications, harmonized and industry-relevant test procedures are necessary to benchmark tests and to ensure comparability of stack performance results from different parties. This paper reports the results of parametric sensitivity tests performed based on test procedures proposed by a European project, Stack-Test. The sensitivity of a Nafion-based low temperature PEMFC stack’s performance to parametric changes was the main objective of the tests. Four crucial parameters for fuel cell operation were chosen; relative humidity, temperature, pressure, and stoichiometry at varying current density. Furthermore, procedures for polarization curve recording were also tested both in ascending and descending current directions.


2021 ◽  
Vol MA2021-02 (37) ◽  
pp. 1104-1104
Author(s):  
Ariel Chiche ◽  
Göran Lindbergh ◽  
Ivan Stenius ◽  
Carina Lagergren

2006 ◽  
Vol 161 (2) ◽  
pp. 929-937 ◽  
Author(s):  
Xiaozi Yuan ◽  
Jian Colin Sun ◽  
Haijiang Wang ◽  
Jiujun Zhang

2006 ◽  
Vol 3 (4) ◽  
pp. 384-388 ◽  
Author(s):  
Damiano Di Penta ◽  
Karim Bencherif ◽  
Michel Sorine ◽  
Qinghua Zhang

This paper proposes a reduced fuel cell stack model for control and fault diagnosis which was validated with experimental data. Firstly, the electro-chemical phenomena are modeled based on a mechanism of gas adsorption/desorption on catalysts at the anode and at the cathode of the stack, including activation, diffusion, and carbon monoxide poisoning. The electrical voltage of a stack cell is then modeled by the difference between the two electrode potentials. A simplified thermal model of the fuel cell stack is also developed in order to take into account heat generation from reactions, heat transfers, and evaporation/condensation of water. Finally, the efficiency ratio is computed as a model output. It is used to evaluate the efficiency changes of the entire system, providing an important indicator for fault detection.


2019 ◽  
Vol 25 (1) ◽  
pp. 733-745 ◽  
Author(s):  
Maria Pérez-Page ◽  
Valentin Pérez-Herranz

Sign in / Sign up

Export Citation Format

Share Document