Variable structure battery-based fuel cell hybrid power system and its incremental fuzzy logic energy management strategy

2020 ◽  
Vol 45 (21) ◽  
pp. 12130-12142 ◽  
Author(s):  
Ying Shen ◽  
Pengfei Cui ◽  
Xuechao Wang ◽  
Xuefeng Han ◽  
Ya-Xiong Wang
Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1660
Author(s):  
Seydali Ferahtia ◽  
Ali Djeroui ◽  
Tedjani Mesbahi ◽  
Azeddine Houari ◽  
Samir Zeghlache ◽  
...  

This paper aims at presenting an energy management strategy (EMS) based upon optimal control theory for a battery–supercapacitor hybrid power system. The hybrid power system consists of a lithium-ion battery and a supercapacitor with associated bidirectional DC/DC converters. The proposed EMS aims at computing adaptive gains using the salp swarm algorithm and load following control technique to assign the power reference for both the supercapacitor and the battery while achieving optimal performance and stable voltage. The DC/DC converter model is derived utilizing the first-principles method and computes the required gains to achieve the desired power. The fact that the developed algorithm takes disturbances into account increases the power elements’ life expectancies and supplies the power system with the required power.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 882
Author(s):  
Dongxu Li ◽  
Bing Xu ◽  
Jie Tian ◽  
Zheshu Ma

In order to improve fuel economy and enhance operating efficiency of fuel cell hybrid vehicles (FCHVs), fuzzy logic control (FLC) strategies are available and suggested for adoption. In this paper, the powertrain of a fuel cell hybrid vehicle is designed and the parameters of the motor, battery, and fuel cell are calculated. The FLC strategy and the power following control (PFC) strategy are designed for the studied FCHV. A secondary development for Advanced Vehicle Simulator (ADVISOR) is implemented based on the standard driving cycles, and a Chinese typical city driving cycle is imported. Simulation results demonstrate that the proposed FLC strategy is more valid and reasonable than the traditional PFC strategy. The proposed FLC strategy affects the vehicle characteristics significantly and contributes to better performance in four aspects: fuel economy, efficiency of battery and fuel cell system, battery state of charge (SOC), and battery life. Hence, the FLC strategy is more suitable for the energy management strategy for fuel cell and battery hybrid vehicles.


Sign in / Sign up

Export Citation Format

Share Document