Calculation of point-spread function for optical systems with finite value of numerical aperture

Optik ◽  
2007 ◽  
Vol 118 (11) ◽  
pp. 537-543 ◽  
Author(s):  
Antonin Miks ◽  
Jiri Novak ◽  
Pavel Novak
1978 ◽  
Vol 56 (1) ◽  
pp. 12-16
Author(s):  
A. K. Gupta ◽  
R. N. Singh ◽  
K. Singh

Disk spread functions are evaluated to study the performance of optical systems in the presence of linear coma. Optimum balance among various coma terms based on Strehl intensity criterion is used and the applicability of this balance to imaging of extended objects is examined. Graphical results of intensity distribution in the paraxial receiving plane for the diffraction images of extended circular targets for various sizes and azimuths are presented. Results for the point spread function in presence of optimum balanced linear coma come out as a special case and are also included.


2021 ◽  
Author(s):  
Andra Naresh Kumar Reddy ◽  
Ramprasad Lachimala ◽  
Mahdieh Hashemi ◽  
Dasari Karuna Sagar

2004 ◽  
Vol 12 (2) ◽  
pp. 3-7
Author(s):  
Stephen W. Carmichael ◽  
Wilma L. Lingle

Whereas too much of a good thing can be bad, too little of a good tiling can be good. In this case, the accidental dilution of X-rhodamine tubulin injected into living cells resulted in a heterogeneous labeling of micro tubules, rather than visualization of continuous structures. This heterogeneous labeling rendered a speckled image, hence the term fluorescent speckle microscopy (FSM) was introduced. It turns out that FSM yields particularly useful information on dynamic events within living cells, for example the assembly and disassembly of microtubules.There are two recent reviews of FSM by Clare Waterman-Storer and Gaudenz Danuser, one emphasizing the biologic applications of the technique, the other emphasizing the quantitative aspects. For their purposes, they defined a “speckle” as a diffraction-limited region of the image that is significantly brighter than its immediate environment. It can be calculated from the point-spread function (which is determined by the numerical aperture of the lens) that optimally a diffraction-limited region of about 250 nm can be imaged.


2000 ◽  
Vol 10 (05n06) ◽  
pp. 305-313
Author(s):  
THOMAS P. COSTELLO ◽  
WASFY B. MIKHAEL

An analytical model is developed for the space-variant (SV) point-spread-function (PSF) of an undercorrected optical system with a rectangular aperture. The model accommodates broadening and shifting of the central lobe, as well as sidelobe asymmetry of the PSF, as field angle increases. These effects are exhibited by diffraction-based PSF models. The proposed model uses eight parameters for any specific field position, compared to ~ 210 parameters required for direct sampling of an individual PSF. The model is adapted to PSFs developed from diffraction theory using an adaptive system with gradient descent parameter adjustment. Consequently, the model is useful for applying certain SV digital image restoration methods because it significantly reduces the memory required to store PSF sample functions. In addition, the model does not require samples of the PSF or a DFT operation to obtain samples of the optical transfer function (OTF). Thus, the efficiency of SV restoration methods applied in the frequency domain, such as sectioning approaches, is further improved. Data presented confirms the accuracy and the computational advantage of the model by quantifying its adaptation to a physical PSF over a range of field angles.


Sign in / Sign up

Export Citation Format

Share Document