scholarly journals Mode I and mixed mode crack-tip fields in strain gradient plasticity

2011 ◽  
Vol 46 (9) ◽  
pp. 1223-1231 ◽  
Author(s):  
Stergios Goutianos
1990 ◽  
Vol 57 (3) ◽  
pp. 635-638 ◽  
Author(s):  
P. Dong ◽  
J. Pan

In this paper, we first discuss some of the properties of the crack-tip sectors for perfectly plastic materials under plane-stress conditions. Then starting with the plane-stress mixed-mode crack-tip fields suggested by Shih (1973), we assemble these sectors in a slightly different manner from those in Shih (1973). The missing governing equations needed to completely specify the crack-tip fields for both near mode I and near mode II mixed-mode loadings are derived. The mode I crack-tip field, as the limit of the near mode I cases, differs from Hutchinson’s solution (1968) by the appearance of a small constant stress sector ahead of the crack tip. In addition, the relevance of the solutions of the near mode II cases to some interesting features of the mixed-mode crack-tip fields, as suggested by Budiansky and Rice (1973), is also discussed.


1999 ◽  
Vol 64 (5) ◽  
pp. 625-648 ◽  
Author(s):  
J.Y. Chen ◽  
Y. Wei ◽  
Y. Huang ◽  
J.W. Hutchinson ◽  
K.C. Hwang

2019 ◽  
Vol 300 ◽  
pp. 11004 ◽  
Author(s):  
Marcel Wicke ◽  
Angelika Brueckner-Foit

Carefully performed experiments with long cracks in the near-threshold regime have shown that the crack tip field of these cracks significantly deviate from the expected mode-I butterfly-shaped ones and resemble strongly to mixed-mode crack tip fields. A simulation study using a crystal plasticity (CP) approach has been utilized in order to understand this phenomenon. To this end, a digital twin of an aluminum sample fatigued in the near-threshold regime was generated with the help of electron backscatter diffraction (EBSD) and X-ray tomography. Once set-up, the digital twin was loaded in uniaxial tension using the fast spectral solver implemented in the Düsseldorf Advanced Material Simulation Kit (DAMASK). The versatility of this experimental-computational approach for studying the strain partitioning at the crack tip is demonstrated in this work.


Sign in / Sign up

Export Citation Format

Share Document