plane stress
Recently Published Documents


TOTAL DOCUMENTS

1438
(FIVE YEARS 149)

H-INDEX

52
(FIVE YEARS 4)

2022 ◽  
Vol 252 ◽  
pp. 113169
Author(s):  
M.M.S. Vilar ◽  
P. Khaneh Masjedi ◽  
D.A. Hadjiloizi ◽  
Paul M. Weaver

2022 ◽  
Vol 188 ◽  
pp. 108500
Author(s):  
Yingzhu Wang ◽  
Xupeng Zhu ◽  
Yunxuan Gong ◽  
Nanxi Liu ◽  
Zuohua Li ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 263
Author(s):  
Sergei Ivanov ◽  
Antoni Artinov ◽  
Evgenii Zemlyakov ◽  
Ivan Karpov ◽  
Sergei Rylov ◽  
...  

The present work seeks to extend the level of understanding of the stress field evolution during direct laser deposition (DLD) of a 3.2 mm thick multilayer wall of Ti-6Al-4V alloy by theoretical and experimental studies. The process conditions were close to the conditions used to produce large-sized structures by the DLD method, resulting in specimens having the same thermal history. A simulation procedure based on the implicit finite element method was developed for the theoretical study of the stress field evolution. The accuracy of the simulation was significantly improved by using experimentally obtained temperature-dependent mechanical properties of the DLD-processed Ti-6Al-4V alloy. The residual stress field in the buildup was experimentally measured by neutron diffraction. The stress-free lattice parameter, which is decisive for the measured stresses, was determined using both a plane stress approach and a force-momentum balance. The influence of the inhomogeneity of the residual stress field on the accuracy of the experimental measurement and the validation of the simulation procedure are analyzed and discussed. Based on the numerical results it was found that the non-uniformity of the through-thickness stress distribution reaches a maximum in the central cross-section, while at the buildup ends the stresses are distributed almost uniformly. The components of the principal stresses are tensile at the buildup ends near the substrate. Furthermore, the calculated equivalent plastic strain reaches 5.9% near the buildup end, where the deposited layers are completed, while the plastic strain is practically equal to the experimentally measured ductility of the DLD-processed alloy, which is 6.2%. The experimentally measured residual stresses obtained by the force-momentum balance and the plane stress approach differ slightly from each other.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yongyi Wang ◽  
Bin Gong ◽  
Chun’an Tang

To reveal the mechanical mechanisms and energy release characteristics underlying progressive failure of columnar jointed basalts (CJBs) with various model boundaries and confining pressures, by combining the meso-damage mechanics, statistical strength theory, and continuum mechanics, inhomogeneous CJB models with different dip angles to the column axis are constructed. In the cases of plane stress, plane strain, and between plane stress and plane strain, the gradual fracture processes of CJBs are simulated under different confining pressures and the acoustic emission (AE) rules are obtained. The results show that: 1) in the case of plane stress, the fracture process of CJBs along direction I orthogonal to the column axis: at the initial stage of loading, the vertical joints and the transverse joints in the CJB specimen are damaged. Then, more columns in the upper middle part are cracked; 2) in the case between plane stress and plane strain, the fracture process of CJBs along the direction parallel to the column axis: at the initial stage of loading, the columnar joints are damaged. Then, the area of the damaged and broken columns at the top of the specimen increases and the crushing degree intensifies; 3) for the case between plane stress and plane strain, the AE energy accumulation before the peak stress is higher than the plane strain state along the direction orthogonal to the column axis. Meanwhile, along the direction parallel to the column axis, this value becomes larger when changing from the state between plane stress and plane strain to the plane strain state. These achievements will certainly improve our understanding of the fracture mechanism and energy evolution of CJBs and provide valuable insights into the instability precursor of CJBs.


Ultrasonics ◽  
2021 ◽  
pp. 106639
Author(s):  
Haibo Liu ◽  
Tianran Liu ◽  
Peixun Yang ◽  
Yankun Liu ◽  
Sijia Gao ◽  
...  

2021 ◽  
Vol 89 (1) ◽  
Author(s):  
Richard M. Christensen

Abstract The recently developed general materials failure theory is specialized to the two-dimensional state of plane stress. It takes a form that is virtually no more involved than that of the Mises criterion. Yet it remains applicable to the entire range of materials types and thus retains that generality. The Mises form has absolutely no capability for generality. This plane stress form of the new failure theory reveals the existence of three independent modes and mechanisms of failure, not two, not four, purely three. The Mises criterion has one mode of failure. These three modes of failure are fully examined. It is verified that these modes of failure under plane stress conditions are exactly the same as those operative in the three-dimensional case. The simple plane stress form of the failure theory has major appeal and likely use as a teaching tool to introduce failure and to help de-mystify the vitally important general subject of materials failure.


Author(s):  
Karl A. Kalina ◽  
Lennart Linden ◽  
Jörg Brummund ◽  
Philipp Metsch ◽  
Markus Kästner

AbstractHerein, an artificial neural network (ANN)-based approach for the efficient automated modeling and simulation of isotropic hyperelastic solids is presented. Starting from a large data set comprising deformations and corresponding stresses, a simple, physically based reduction of the problem’s dimensionality is performed in a data processing step. More specifically, three deformation type invariants serve as the input instead of the deformation tensor itself. In the same way, three corresponding stress coefficients replace the stress tensor in the output layer. These initially unknown values are calculated from a linear least square optimization problem for each data tuple. Using the reduced data set, an ANN-based constitutive model is trained by using standard machine learning methods. Furthermore, in order to ensure thermodynamic consistency, the previously trained network is modified by constructing a pseudo-potential within an integration step and a subsequent derivation which leads to a further ANN-based model. In the second part of this work, the proposed method is exemplarily used for the description of a highly nonlinear Ogden type material. Thereby, the necessary data set is collected from virtual experiments of discs with holes in pure plane stress modes, where influences of different loading types and specimen geometries on the resulting data sets are investigated. Afterwards, the collected data are used for the ANN training within the reduced data space, whereby an excellent approximation quality could be achieved with only one hidden layer comprising a low number of neurons. Finally, the application of the trained constitutive ANN for the simulation of two three-dimensional samples is shown. Thereby, a rather high accuracy could be achieved, although the occurring stresses are fully three-dimensional whereas the training data are taken from pure two-dimensional plane stress states.


2021 ◽  
Vol 24 (3) ◽  
pp. 52-60
Author(s):  
Мark M. Fridman ◽  

Many critical elements of building and machine-building structures during their operation are in difficult operating conditions (high temperature, aggressive environment, etc.). In this case, they can be subject to a double effect: corrosion and material damage. Corrosion leads to a decrease in the cross-section of a structure, resulting in stress increase therein. In turn, damage to the material is accompanied by the appearance of microcracks and voids therein, due to inelastic deformation (creep), leading to a deterioration in its physical properties (for example, the elastic modulus) and a sharp decrease in the stress values at which the structure is destroyed. This article continues the study in the field of the optimal design of structures subject to the aforementioned double effect by the example of the optimization of plates with holes in the plane stress state, exposed to high temperatures (in previous works, the use of this approach was demonstrated in the optimization of the bending elements of rectangular and I-sections). Used as a corrosion equation is the modified Dolinsky mode, which takes into account the (additional) effect of the protective properties of an anticorrosive coating on the corrosion kinetics. Taken as a kinetic equation describing the change in material damage, is Yu. N. Rabotnov’s model, which enables to determine the duration of the incubation period of the beginning of the tangible process of material damage. To study the stress state of a plate, the finite element method is used. With a given contour of the plate, found is the optimal distribution of the thickness of the finite elements into which the given plate is divided. Acting as a constraint of the optimization problem is the parameter of damage to the plate material. The approach proposed in this work can be used to solve similar problems of the optimal design of structures operating under conditions of corrosion and material damage, using both analytical solutions and numerical methods.


Sign in / Sign up

Export Citation Format

Share Document