Mandibular reconstruction through CAD/CAM, virtual surgery and stereolithographic surgical guides for skeletal defects after oncological resections

Author(s):  
A. Haddad ◽  
G. García ◽  
F. Almeida ◽  
J. Núñez ◽  
M. Picón ◽  
...  
Author(s):  
Seung-Hyun Rhee ◽  
Seung-Hak Baek ◽  
Sang-Hun Park ◽  
Jong-Cheol Kim ◽  
Chun-Gi Jeong ◽  
...  

Abstract Backgrounds The purpose of this study is to discuss the total joint reconstruction surgery for a patient with recurrent ankylosis in bilateral temporomandibular joints (TMJs) using three-dimensional (3D) virtual surgical planning, computer-aided manufacturing (CAD/CAM)-fabricated surgical guides, and stock TMJ prostheses. Case presentation A 66-year-old female patient, who had a history of multiple TMJ surgeries, complained of severe difficulty in eating and trismus. The 3D virtual surgery was performed with a virtual surgery software (FACEGIDE, MegaGen implant, Daegu, South Korea). After confirmation of the location of the upper margin for resection of the root of the zygoma and the lower margin for resection of the ankylosed condyle, and the position of the fossa and condyle components of stock TMJ prosthesis (Biomet, Jacksonville, FL, USA), the surgical guides were fabricated with CAD/CAM technology. Under general anesthesia, osteotomy and placement of the stock TMJ prosthesis (Biomet) were carried out according to the surgical planning. At 2 months after the operation, the patient was able to open her mouth up to 30 mm without complication. Conclusion For a patient who has recurrent ankylosis in bilateral TMJs, total joint reconstruction surgery using 3D virtual surgical planning, CAD/CAM-fabricated surgical guides, and stock TMJ prostheses may be an effective surgical treatment option.


Author(s):  
Larissa Braga dos Santos ◽  
Adriano Relvas Barreira de Oliveira ◽  
Mauro Lefrançois ◽  
Marcos Venício Azevedo ◽  
Pablo Sotelo ◽  
...  

Digital planning of the prosthesis associated with surgical planning increased predictability, since surgical guides indicate the best place for implant installation, thus reducing the number of complications, and the CAD/CAM system provides predictability in the preparation of final restorations, according to the procedure previously planned. Our study reported a digital workflow used for the guided installation of two dental implants in regions 14 and 16, extraction of tooth 15 and installation of a fixed prothesis over implants. After anamnesis and clinical evaluation, intra- and extra-oral photographs of the patient were performed, molding the upper arch with polyvinylsiloxane (2-step putty/light-body technique) and requesting computed tomography. The plaster model obtained was sent to the laboratory and scanned. The generated file (STL) was used to create a diagnostic wax-up that was aligned to the tomography (in DICOM format), enabling the three-dimensional planning of the implants, which generated a partial printed surgical guide after approval of the dentist. After six months, the patient received the provisional fixed prosthesis printed in PMMA (polymethylmethacrylate) on an intermediate in PEEK (polyetheretherketone) aiming to condition an emergency profile to receive a definitive prosthesis two months later, with zirconia-milled infrastructure on a ti-base. The correct understanding of the operator about the steps of the digital workflow (diagnosis, prosthetic planning, surgical planning, guide preparation, temporary and final restorations) gives the operator improved predictability at the time of surgery as well as satisfactory aesthetic and functional result of definitive restorations.


2011 ◽  
Vol 128 (5) ◽  
pp. 1080-1084 ◽  
Author(s):  
Anuja K. Antony ◽  
Wei F. Chen ◽  
Antonia Kolokythas ◽  
Katherine A. Weimer ◽  
Mimis N. Cohen

2020 ◽  
pp. 194338752095268
Author(s):  
Robin Kasper ◽  
Karsten Winter ◽  
Sebastian Pietzka ◽  
Alexander Schramm ◽  
Frank Wilde

Study Design: An experimental in vitro study. Objective: Plate fractures are a recurrent problem in alloplastic mandibular reconstruction. Hypothetically it can be assumed that computer-aided design (CAD)/computer-aided manufacturing (CAM) reconstruction plates have a higher stability than conventional hand-bent plates. The aim of the study was to compare additive and subtractive fabricated CAD/CAM mandibular reconstruction plates as well as conventional plates with regard to their biomechanical properties. Methods: In a chewing simulator, plates of 2 conventional locking plate systems and 2 CAD/CAM-fabricated plate systems were compared. The plates were loaded in a fatigue test. The maximum number of cycles until plate fracture and the plate stiffness were compared. Results: While all conventional plates fractured at a maximum load between 150 and 210 N (Newton) after a number of cycles between 40 000 and 643 000, none of the CAD/CAM plates broke despite a nearly doubled load of 330 N and 2 million cycles. Both CAD/CAM systems proved to be significantly superior to the hand-bent plates. There was no difference between the 2 CAD/CAM systems. Conclusions: Concerning the risk of plate fracture, patient-specific CAD/CAM reconstruction plates appear to have a significant advantage over conventional hand-bent plates in alloplastic mandibular reconstruction.


Author(s):  
Claudius Steffen ◽  
Kay Sellenschloh ◽  
Matthias Vollmer ◽  
Michael M. Morlock ◽  
Max Heiland ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Mei Zho ◽  
Zhe Shao ◽  
Yuxi Zhu ◽  
Bing Liu ◽  
Tianfu Wu

Objective. This study aims to compare the degree of accuracy achieved in mandibular reconstruction between complicated guiding templates (CGT) and simple guiding templates (SGT), to evaluate the necessity to spend more time to design complicated templates prior to surgery. Methods. The preoperative virtual surgery plan (VSP) was used to simulate the osteotomy and accurate mandibular reconstruction strategy. Then the guiding templates were designed and printed to transfer the VSP into the real operation. Between July 2013 and November 2014, we used the SGT in 13 L-type mandibular defect reconstructions utilising vascularized iliac crest bone (VICB). From March 2015 to March 2018, we used CGT in 14 L-type mandibular defects, also reconstructing with VICB. The indicators of mandibular symmetry, midline deviation, alveolar height loss, bone conjunction gap, and operation time were analyzed and compared between the two groups. Results. The overall bone graft success rate was 100% (27/27) between all patients. The SGT and CGT groups showed similar symmetry (1.01 ± 0.03 vs. 1.03 ± 0.04, P = 0.11) and mandibular midline displacement (1.0 ± 0.7 mm vs. 1.2 ± 0.8 mm, P=0.29). The CGT group showed less alveolar height deficiency than the SGT group (3.0 ± 2.4 mm vs. 7.8 ± 6.8 mm, P=0.01) and lesser bony conjunction gap between the graft and the mandible (1.6 ± 0.7 mm vs. 2.4 ± 1.2 mm, P = 0.02). The average operation time was significantly lower in the CGT group than in the SGT group (340.5 ± 74 min vs. 391.9 ± 41.7 min, P = 0.02). Conclusion. In the simple mandibular reconstruction, the time-consuming CGT did not significantly improve the symmetry and midline displacement compared to SGT, but it demonstrated less reduction (increased preservation) in alveolar height and decreased the size of the bone conjunction gap. And in addition, CGT also reduced the average operation time and simplified intraoperative procedures compared with SGT.


2014 ◽  
Vol 7 (2) ◽  
pp. 158-166 ◽  
Author(s):  
Frank Wilde ◽  
Carl-Peter Cornelius ◽  
Alexander Schramm

We investigated the workflow of computer-assisted mandibular reconstruction that was performed with a patient-specific mandibular reconstruction plate fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) techniques and a fibula flap. We assessed the feasibility of this technique from virtual planning to the completion of surgery. Computed tomography (CT) scans of a cadaveric skull and fibula were obtained for the virtual simulation of mandibular resection and reconstruction using ProPlan CMF software (Materialise®/DePuy Synthes®). The virtual model of the reconstructed mandible provided the basis for the computer-aided design of a patient-specific reconstruction plate that was milled from titanium using a five-axis milling machine and CAM techniques. CAD/CAM techniques were used for producing resection guides for mandibular resection and cutting guides for harvesting a fibula flap. Mandibular reconstruction was simulated in a cadaveric wet laboratory. No problems were encountered during the procedure. The plate was fixed accurately to the residual bone without difficulty. The fibula segments were attached to the plate rapidly and reliably. The fusion of preoperative and postoperative CT datasets demonstrated high reconstruction precision. Computer-assisted mandibular reconstruction with CAD/CAM-fabricated patient-specific reconstruction plates appears to be a promising approach for mandibular reconstruction. Clinical trials are required to determine whether these promising results can be translated into successful practice and what further developments are needed.


2016 ◽  
Vol 42 (5) ◽  
pp. 391-398 ◽  
Author(s):  
Fawaz Alzoubi ◽  
Nima Massoomi ◽  
Anders Nattestad

The aim of this study is to assess the accuracy of immediately placed implants using Anatomage Invivo5 computer-assisted design/computer-assisted manufacturing (CAD/CAM) surgical guides and compare the accuracy to delayed implant placement protocol. Patients who had implants placed using Anatomage Invivo5 CAD/CAM surgical guides during the period of 2012–2015 were evaluated retrospectively. Patients who received immediate implant placements and/or delayed implant placements replacing 1–2 teeth were included in this study. Pre- and postsurgical images were superimposed to evaluate deviations at the crest, apex, and angle. A total of 40 implants placed in 29 patients were included in this study. The overall mean deviations measured at the crest, apex, and angle were 0.86 mm, 1.25 mm, and 3.79°, respectively. The means for the immediate group deviations were: crest = 0.85 mm, apex = 1.10, and angle = 3.49°. The means for the delayed group deviations were: crest = 0.88 mm, apex = 1.59, and angle = 4.29°. No statistically significant difference was found at the crest and angle; however, there was a statistically significant difference between the immediate and delayed group at the apex, with the immediate group presenting more accurate placements at the apical point than the delayed group. CAD/CAM surgical guides can be reliable tools to accurately place implants immediately and/or in a delayed fashion. No statistically significant differences were found between the delayed and the immediate group at the crest and angle, however apical position was more accurate in the immediate group.


2017 ◽  
Vol 45 (2) ◽  
pp. 330-337 ◽  
Author(s):  
Achille Tarsitano ◽  
Salvatore Battaglia ◽  
Valerio Ramieri ◽  
Piero Cascone ◽  
Leonardo Ciocca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document