Cochlear implant and inner ear malformation

2008 ◽  
Vol 72 (4) ◽  
pp. 541-547 ◽  
Author(s):  
Natalie Loundon ◽  
Nicolas Leboulanger ◽  
Janine Maillet ◽  
Agnès Riggouzzo ◽  
Patrick Richard ◽  
...  
Author(s):  
Xiao-Feng Qiao ◽  
Xin Li ◽  
Qiang-Wei Zhang ◽  
Tong-Li Li ◽  
Dong Wang

2020 ◽  
Vol 45 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Merve Ozbal Batuk ◽  
Betul Cicek Cinar ◽  
Mehmet Yarali ◽  
Filiz Aslan ◽  
Hilal Burcu Ozkan ◽  
...  

2010 ◽  
Vol 31 (3) ◽  
pp. 512-518 ◽  
Author(s):  
Alexander M. Huber ◽  
Sim Jae Hoon ◽  
Bonabi Sharouz ◽  
Bodmer Daniel ◽  
Eiber Albrecht

2014 ◽  
Vol 41 (4) ◽  
pp. 331-336 ◽  
Author(s):  
Levent Sennaroğlu ◽  
Gamze Atay ◽  
Münir Demir Bajin

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 301
Author(s):  
Kathrin Malfeld ◽  
Nina Armbrecht ◽  
Holger A. Volk ◽  
Thomas Lenarz ◽  
Verena Scheper

In recent years sensorineural hearing loss was found to affect not exclusively, nor at first, the sensory cells of the inner ear. The sensory cells’ synapses and subsequent neurites are initially damaged. Auditory synaptopathies also play an important role in cochlear implant (CI) care, as they can lead to a loss of physiological hearing in patients with residual hearing. These auditory synaptopathies and in general the cascades of hearing pathologies have been in the focus of research in recent years with the aim to develop more targeted and individually tailored therapeutics. In the current study, a method to examine implanted inner ears of guinea pigs was developed to examine the synapse level. For this purpose, the cochlea is made transparent and scanned with the implant in situ using confocal laser scanning microscopy. Three different preparation methods were compared to enable both an overview image of the cochlea for assessing the CI position and images of the synapses on the same specimen. The best results were achieved by dissection of the bony capsule of the cochlea.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Alaa Nasser Hussain Zaher ◽  
Tougan Taha Abd El Aziz ◽  
Ahmed Samy Abdelrahman

Abstract Background Hearing loss management using cochlear implants in patients with inner ear anomalies has long been discussed in the otology community. Magnetic resonances imaging (B,/IRI) and Computed tomography (CT) play important roles in the preoperative assessment of inner ear abnormalities such as cochlear nerve deficiency and variant anatomy as these abnormalities may not only affect the decision of the implantation procedure or the patient's prognosis regarding auditory improvement, but also the risk of complications. Objective To examine the prevalence of inner ear anomalies among cochlear implant recipients in patients with congenital sensorineural hearing loss among the pediatric age group in the Demerdash hospital, Ain Shams university using High resolution computed tomography (HRCT) and MRI imaging. Methods A retrospective descriptive study over the course of 9 months that included all patients that are candidates for cochlear implant referred to the Radiology department, Ain Shams University Hospitals for a preoperative imaging in the form of CT and VIRI scans. Results CT and MRI scans of 33 patients who had congenital hearing loss and were candidates for cochlear implantation with total 66 ears were reviewed. Inner ear anomalies were identified in 8 patients representing a prevalence (24.2%) with 14 ear diseased. Anomalies were seen bilaterally in 6 patients and unilaterally in 2 patients. Among the 14 diseased ear, 9 ears (64.3%) were seen with incomplete partition Il, 7 ears (50%) were seen with enlarged vestibular aqueduct, 4 ears (28.6%) were seen with cochlear hypoplasia, 3 ears (21.4%) were seen with semicircular canal aplasia, 2 ears (14.3%) were seen with incomplete partition type I, 2 ears (14.3%) were seen with cochlear nerve aplasia, 2 ears with cochlear aplasia (14.3%), I ear (7.1%) was seen with common cavity ear (7.1%) with complete labyrinthine aplasia. Conclusion Prevalence of inner ear anomalies among cochlear implant candidates was 24.2%. This result is consistent with results worldwide and the most common anomalies were Incomplete partition Il and large vestibular aqueduct. Abbreviations Computed tomography (CT), Magnetic resonance imaging (MRI), High resolution computed tomography (HRCT), Internal auditory canal (IAC), Cerebellopontine angle (CPA).


Author(s):  
Francesca Atturo ◽  
Ginevra Portanova ◽  
Francesca Yoshie Russo ◽  
Daniele De Seta ◽  
Laura Mariani ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Ingo Todt ◽  
Rainer O. Seidl ◽  
Arne Ernst

The exchange of an cochlear implant or the re-positioning of an electrode have become more frequently required than a decade ago. The consequences of such procedures at a microstructural level within the cochlea are not known. It was the aim of the present study to further investigate the effects of an CI electrode pull-out. Therefore 10 freshly harvested temporal bones (TB) were histologically evaluated after a cochlear implant electrode pull-out of a perimodiolar electrode. In additional 9 TB the intrascalar movements of the CI electrode while being pulled-out were digitally analysed by video- capturing. Histologically, a disruption of the modiolar wall or the spiral osseous lamina were not observed. In one TB, a basilar membrane lifting up was found, but it could not be undoubtedly attributed to the pull-out of the electrode. When analyzing the temporal sequence of the electrode movement during the pull-out, the electrode turned in one case so that the tip elevates the basilar membrane. The pull- out of perimodiolarly placed CI electrodes does not damage the modiolar wall at a microstructural level and should be guided (e.g., forceps) to prevent a 90 o turning of the electrode tip into the direction of the basilar membrane.


Sign in / Sign up

Export Citation Format

Share Document