Experimental investigation and correlation of two-phase frictional pressure drop of R410A–oil mixture flow boiling in a 5mm microfin tube

2009 ◽  
Vol 32 (1) ◽  
pp. 150-161 ◽  
Author(s):  
Guoliang Ding ◽  
Haitao Hu ◽  
Xiangchao Huang ◽  
Bin Deng ◽  
Yifeng Gao
2010 ◽  
Vol 18 (02) ◽  
pp. 109-116 ◽  
Author(s):  
YIFENG GAO ◽  
BIN DENG ◽  
GUOLIANG DING ◽  
HAITAO HU ◽  
XIANGCHAO HUANG

This study presents experimental frictional pressure drop for R410A/oil mixture flow boiling in small horizontal smooth tubes with inside diameters of 4.18 mm and 2.0 mm. Experimental conditions cover nominal oil concentrations from 0 to 5%. The test results show that the presence of oil enhances two-phase frictional pressure drop about 0–120% and 0–90% at present test conditions for 4.18 mm I.D. smooth tube and 2.0 mm I.D. smooth tube, respectively, and the enhanced effect is more evident at higher vapor qualities where the local oil concentrations are higher. A new correlation to predict the local frictional pressure drop of R410A/oil mixture flow boiling inside conventional size and small smooth tubes is developed based on local properties of refrigerant–oil mixture, and the experimental data of 4.18 mm I.D. and 2.0 mm I.D. smooth tubes and that of 6.34 mm I.D. smooth tube (Hu et al., 2008) are well-correlated with the new correlation.


2010 ◽  
Vol 16 (4) ◽  
pp. 453-470 ◽  
Author(s):  
Xiangchao Huang ◽  
Guoliang Ding ◽  
Haitao Hu ◽  
Yu Zhu ◽  
Yifeng Gao ◽  
...  

2009 ◽  
Vol 52 (15-16) ◽  
pp. 3634-3644 ◽  
Author(s):  
Jesús Moreno Quibén ◽  
Lixin Cheng ◽  
Ricardo J. da Silva Lima ◽  
John R. Thome

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5972
Author(s):  
Yu Xu ◽  
Zihao Yan ◽  
Ling Li

To protect the environment, a new low-GWP refrigerant R1234ze(E) was created to substitute R134a. However, its flow boiling performances have not received sufficient attention so far, which hinders its popularization to some extent. In view of this, an experimental investigation was carried out in a 1.88 mm horizontal circular minichannel. The saturation pressures were maintained at 0.6 and 0.7 MPa, accompanied by mass flux within 540–870 kg/m2 s and heat flux within 25–65 kW/m2. For nucleate boiling, a larger heat flux brings about a larger heat transfer coefficient (HTC), while for convective boiling, the mass flux and vapor quality appear to take the lead role. The threshold vapor quality of different heat transfer mechanisms is around 0.4. Additionally, larger saturation pressure results in large HTC. As for the frictional pressure drop (FPD), it is positively influenced by mass flux and vapor quality, while negatively affected by saturation pressure, and the influence of heat flux is negligible. Furthermore, with the measured data, several existing correlations are compared. The results indicate that the correlations of Saitoh et al. (2007) and Müller-Steinhagen and Heck (1986) perform best on flow boiling HTC and FPD with mean absolute deviations of 5.4% and 10.9%.


Sign in / Sign up

Export Citation Format

Share Document