Modelling of thermal rock mass properties at the potential sites of a Swedish nuclear waste repository

2009 ◽  
Vol 46 (6) ◽  
pp. 1042-1054 ◽  
Author(s):  
Jan Sundberg ◽  
Pär-Erik Back ◽  
Rolf Christiansson ◽  
Harald Hökmark ◽  
Märta Ländell ◽  
...  
1988 ◽  
Vol 127 ◽  
Author(s):  
T. Rothfuchs ◽  
K. Wieczorek ◽  
E. G. Mcnulty ◽  
S. K. Gupta ◽  
D. Clark

ABSTRACTA joint US/FRG nuclear waste repository simulation experiment was performed at the Asse Salt Mine in the Federal Republic of Germany (FRG). The High Level Waste (HLW) disposal in boreholes was simulated by the simultaneous emplacement of electrical heaters and cobalt-60 sources at four individual test sites located in a special underground test room at the 800 m-level.In order to resolve the issues of rock mass/waste package interaction the temperature field, brine migration into the heater boreholes, borehole gas pressure and composition, and rock mass stresses and displacements were monitored during the test. In order to validate computer code predictions the acquired data were compared to calculational results. Corrosion specimens remained in the heater boreholes during the course of the experiment and were afterwards examined.


2015 ◽  
Vol 22 (2) ◽  
pp. 631-637 ◽  
Author(s):  
Zhong-ming Jiang ◽  
Dashnor Hoxha ◽  
Françoise Homand ◽  
Yong-gui Chen

1981 ◽  
Vol 6 ◽  
Author(s):  
Sudesh K. Singh

ABSTRACTFourteen Canadian clays and clay admixtures were subjected to simulated nuclear waste repository environments. The present work is concerned with the montmorillonite-dominant materials only. The montmorillonite-dominant samples showed significant leaching on interaction with deionized water. On heating the samples at 200°C for 500 hours, montmorillomites lost intermicellar water completely and acquired cusp-like to cylindrical morphologies. The loss of water and the morphological changes in montmorillonites significantly altered the engineering characteristics. Permeability, shrinkage limits, compactability and shear strength varied in response to the dominant exchange cation in the structure of montmorillonites and the presence of other mineral components in the materials. The synthetic granite water reacted with montmorillonites and led to changes in chemical and mineralogical compositions, crystalline state and engineering properties.


Sign in / Sign up

Export Citation Format

Share Document