scholarly journals A generalized stress intensity factor to be applied to rounded V-shaped notches

2006 ◽  
Vol 43 (9) ◽  
pp. 2461-2478 ◽  
Author(s):  
P. Lazzarin ◽  
S. Filippi
Author(s):  
George G. Adams

When a crack tip impinges upon a bi-material interface, the order of the stress singularity will be equal to, less than or greater than one-half. The generalized stress intensity factors have already been determined for some such configurations, including when a finite-length crack is perpendicular to the interface. However, for these non-square-root singular stresses, the determination of the conditions for crack growth are not well established. In this investigation, the critical value of the generalized stress intensity factor for tensile loading is related to the work of adhesion by using a cohesive zone model in an asymptotic analysis of the separation near the crack tip. It is found that the critical value of the generalized stress intensity factor depends upon the maximum stress of the cohesive zone model, as well as on the Dundurs parameters ( α and β ). As expected this dependence on the cohesive stress vanishes as the material contrast is reduced, in which case the order of the singularity approaches one-half.


2014 ◽  
Vol 627 ◽  
pp. 165-168
Author(s):  
Kateřina Štegnerová ◽  
Luboš Náhlík ◽  
Pavel Hutař

The aim of this paper is to estimate a value of the critical applied force for a crack initiation from the sharp V-notch tip. The classical approach of the linear elastic fracture mechanics (LELM) was generalized, because the stress singularity exponent differs from 0.5 in studied case. The value of the stress singularity exponent depends on the V-notch opening angle. The finite element method was used for a determination of stress distribution in the vicinity of the sharp V-notch tip and for the estimation of the generalized stress intensity factor depending on the V-notch opening angle. Critical value of generalized stress intensity factor was obtained by using stability criterion based on the tangential stress component averaged over a critical distancedfrom the V-notch tip. Calculated values of the critical applied force were compared with experimental data taken from the literature.


2008 ◽  
Vol 385-387 ◽  
pp. 409-412 ◽  
Author(s):  
Jan Klusák ◽  
Tomáš Profant ◽  
Michal Kotoul

The study of bi-material notches is becoming a topical problem as they can model geometrical or material discontinuities efficiently. Assessing the conditions for crack initiation in bimaterial notches makes it necessary to calculate the generalized stress intensity factors H. In contrast to the determination of the K factor for a crack in an isotropic homogeneous medium, for the ascertainment of a generalized stress intensity factor (GSIF) there is no procedure incorporated in the calculation systems. The calculation of these fracture mechanics parameters is not trivial and requires certain experience. Nevertheless, the accuracy of the H-factor calculation directly influences the reliability of the assessment of the singular stress concentrators. Direct methods of the estimation of H factors usually require choosing the length parameter entering into the calculation. Two types of direct methods of calculating the GSIFs are presented, tested and mutually compared. Recommendations for reliable estimation of H factors are suggested.


Sign in / Sign up

Export Citation Format

Share Document