cohesive stress
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 1046 ◽  
pp. 1-7
Author(s):  
Manjunath V. Bhogone ◽  
Kolluru V.L. Subramaniam

The fracture response of macro polypropylene fiber reinforced concrete (PPFRC) and hybrid blend of macro and micro polypropylene fiber reinforced concrete (HyFRC) are evaluated at 1, 3, 7 and 28 days. There is an improvement in the early-age fracture response of HyFRC compared to PPFRC. The changing cohesive stress-crack separation relationship produced by ageing of the concrete matrix is determined from the fracture test responses. An improved early-age cohesive stress response is obtained from the hybrid blend containing micro and macro fibers. The hybrid fiber blend also has a higher tensile strength at early age when compared to an identical volume fraction of macro polypropylene fibers.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhibin Lin ◽  
Boyang Zhang ◽  
Xiaofei Gong ◽  
Limin Sun ◽  
Wenzhen Wang ◽  
...  

The filling material of the karst collapse column (KCC) is easy to be activated by mining. During this process, the mechanical properties of KCC fillings change, and its water resisting capacity constantly deteriorates and thus often leads to water inrush disaster. In this study, the samples of KCC fillings were taken on-site and then were remolded by the consolidation drainage method. The variation laws of the compressive strength, tensile strength, cohesive stress, internal friction angle, and permeability of the filling samples with respect to the consolidation pressure and moisture content were tested and analyzed. Based on an engineering example, the yield and activation and particle loss of the filling material of the KCC are analyzed. A mechanism for the lagging water inrush of KCC in the process of mining is proposed. The main results of the present study can be concluded concisely as follows. (1) The KCC fillings show obvious soft rock characteristics in the process of uniaxial compression and Brazilian split. The ratio of the uniaxial compressive strength to splitting tensile strength is between 12 : 1 and 8 : 1. The larger the consolidation pressure or the smaller the moisture content, the larger the ratio. (2) With the increase of consolidation pressure or the decrease of moisture content, the uniaxial compressive strength, elastic modulus, splitting tensile strength, cohesive stress, and internal friction angle of the filling material of the KCC increase linearly, while its permeability increases exponentially. (3) When the crack field of the surrounding rocks of the stope is connected with the KCC, its filling material will continue to yield, activate, and migrate under the fluid-solid coupling effect and finally result in the lagging water inrush from the KCC.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 713 ◽  
Author(s):  
Jingrong Wang ◽  
Faxiang Xie ◽  
Chuanlong Zhang ◽  
Jing Ruan

To investigate the combined compression-shear performance of self-compacting concrete (SCC), eight groups of concrete specimens under different axial compression ratios were designed, and the composite performance under different axial stresses was carried out by hydraulic servo machine. The uniaxial and tensile splitting strength of SCC were also included in the study. The failure modes of SCC were presented, discussed, and compared with normal concrete (NC). The characteristic points of stress-strain curves of SCC specimens from the experiments were extracted and analyzed under different axial compression stress. Based on the experimental results, the shear strength of compression-shear load was divided into cohesive stress and residual friction stress. The variation of residual stress and cohesive stress under the combined compression-shear stress was analyzed, and the relationship was obtained by numerical regression. Research results indicated that the residual stress increases linearly with the compression stress while the cohesive stress increased at first and then decreased. The research found that the friction coefficient of SCC was much smaller than NC due to the lack of interlocking effect. Utilizing the compression-shear strength of SCC, the material failure criteria of SCC were proposed from the view of shear failure strength and octahedral stress space, which could fit the experimental results confidently following the mathematical regression analysis. The comparison with data from other literature shows favorable consistence with the obtained criteria. The results of the study could be beneficial complement in engineering practices where SCC was applicable.


2016 ◽  
Vol 853 ◽  
pp. 101-105
Author(s):  
Da Qian Zan ◽  
Quan Sun ◽  
Hong Liang Pan ◽  
Jian Jun Chen ◽  
Zheng Dong Wang

In the cold rolling process, the edge crack extension can cause the strip rupture completely due to the micro manufacturing defects in the edge. It can greatly impact on the production efficiency and cause the huge economic loss. Thus predicting the edge crack extension behavior becomes important to cold rolling industry. In this paper, a 3D extended finite element method (XFEM) based on the cohesive zone model (CZM) was used to study the edge crack extension under the non-reversing two-high mill cold rolling experiment condition. A bi-linear traction-separation law was utilized which is primarily given by the CZM parameters including the cohesive stress, T0 and the cohesive energy, Γ0. The cohesive stress was determined by hybrid technique of the thin-plate tension test and FEM simulation. The cohesive energy was obtained by the In-Situ SEM three points bending experiment. Different reductions were the mainly analysis factor which can study the extent of the edge crack extension by presetting the edge notch. By comparing the experimental and simulation results, they agreed well with each other. It illustrated that the CZM can provide accurate predictions for the edge crack extension in the cold rolling process. Parametric analysis was carried out and showed that the extent of the crack extension increases with the increasing of the reduction ratio.


2016 ◽  
Vol 26 (6) ◽  
pp. 895-918 ◽  
Author(s):  
Johan Tryding ◽  
Gustav Marin ◽  
Mikael Nygårds ◽  
Petri Mäkelä ◽  
Giulio Ferrari

In-plane cohesive failure of paperboard was characterized by short-span uniaxial tension tests. Six paperboards' qualities were experimentally investigated, from which cohesive stress–widening curves were extracted. A fracture energy was defined, expressed in the tensile strength and maximum slope of the cohesive stress–widening relation. Analytical cohesive relations were derived based on the tensile strength and maximum slope, utilizing the Morse potential for diatomic molecules. It was experimentally found that the maximum slope and fracture energy depend on the tensile strength. The ratio of the maximum slope to the elastic modulus (stable length) was shown to be independent of the tensile strength.


2015 ◽  
Vol 07 (06) ◽  
pp. 1550086 ◽  
Author(s):  
Pengfei Wang ◽  
Xin Zhang ◽  
He Zhang ◽  
Xiaotuo Li ◽  
Peigang He ◽  
...  

Laminated multiple metal or alloy sheets have been widely used in protective structures. However, energy absorption mechanism remains unclear for those laminates with different interface and surface conditions under low-velocity impact. This study investigates the effect of interface and surface modified double aluminum sheets under drop-weight loading. The experimental results showed that epoxy-bonded double sheets did not dissipate more energy than free-contact sample. The simulation results agree well with the experimental data at low cohesive stress of the epoxy adhesive, and friction plays an important role in absorbing impact energy for free-contact sample. However, at high interface cohesive stress as simulated, epoxy-bonded samples absorb more energy than free-contact ones. Further experiments indicated that sample with grease spread front surface is more sensitive in improving energy absorption than sample with grease applied in between two layers. These results are important reference for designing laminated composites to improve impact resistance.


Sign in / Sign up

Export Citation Format

Share Document