Analytical and numerical solution to the convection problem in a shallow cavity filled with two immiscible superposed fluids

2015 ◽  
Vol 90 ◽  
pp. 303-310 ◽  
Author(s):  
Fakhreddine S. Oueslati ◽  
Rachid Bennacer ◽  
Mohamed El ganaoui
2019 ◽  
Vol 76 (6) ◽  
pp. 1587-1608
Author(s):  
S. Lakshmivarahan ◽  
John M. Lewis ◽  
Junjun Hu

Abstract In Saltzman’s seminal paper from 1962, the author developed a framework based on the spectral method for the analysis of the solution to the classical Rayleigh–Bénard convection problem using low-order models (LOMs), LOM (n) with n ≤ 52. By way of illustrating the power of these models, he singled out an LOM (7) and presented a very preliminary account of its numerical solution starting from one initial condition and for two values of the Rayleigh number, λ = 2 and 5. This paper provides a complete mathematical characterization of the solution of this LOM (7), herein called the Saltzman LOM (7) [S-LOM (7)]. Historically, Saltzman’s examination of the numerical solution of this low-order model contained two salient characteristics: 1) the periodic solution (in the physical 3D space and time) that expand on Rayleigh’s classical study and 2) a nonperiodic solution (in the temporal space dealing with the evolution of Fourier amplitude) that served Lorenz in his fundamental study of chaos in the early 1960s. Interestingly, the presence of this nonperiodic solution was left unmentioned in Saltzman’s study in 1962 but explained in detail in Lorenz’s scientific biography in 1993. Both of these fundamental aspects of Saltzman’s study are fully explored in this paper and bring a sense of completeness to the work.


2020 ◽  
Vol 2 (1) ◽  
pp. 15-18
Author(s):  
Syabeela Syahali ◽  
Ewe Hong Tat ◽  
Gobi Vetharatnam ◽  
Li-Jun Jiang ◽  
Hamsalekha A Kumaresan

This paper analyses the backscattering cross section of a cylinder both using traditional method model and a new numerical solution model, namely Relaxed Hierarchical Equivalent Source Algorithm (RHESA). The purpose of this study is to investigate the prospect of incorporating numerical solution model into volume scattering calculation, to be applied into microwave remote sensing in vegetation area. Results show a good match, suggesting that RHESA may be suitable to be used to model the more complex nature of vegetation medium.


Sign in / Sign up

Export Citation Format

Share Document