Crambe oil yield and soil physical properties responses to no-tillage, cover crops and chiseling

2021 ◽  
Vol 161 ◽  
pp. 113174
Author(s):  
Deonir Secco ◽  
Doglas Bassegio ◽  
Bruna de Villa ◽  
Araceli Ciotti de Marins ◽  
Luiz Antônio Zanão Junior ◽  
...  
Author(s):  
Camila Jorge Bernabé Ferreira ◽  
Cássio Antonio Tormena ◽  
Wagner Henrique Moreira ◽  
Lincoln Zotarelli ◽  
Edner Betioli Junior ◽  
...  

2018 ◽  
Vol 09 (04) ◽  
pp. 584-598 ◽  
Author(s):  
César Tiago Forte ◽  
Amauri Nelson Beutler ◽  
Leandro Galon ◽  
Camile Thais Castoldi ◽  
Fábio Luís Winter ◽  
...  

age ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Samuel I. Haruna ◽  
Stephen H. Anderson ◽  
Ranjith P. Udawatta ◽  
Clark J. Gantzer ◽  
Nathan C. Phillips ◽  
...  

1993 ◽  
Vol 26 (4) ◽  
pp. 289-299 ◽  
Author(s):  
E.G. Gregorich ◽  
W.D. Reynolds ◽  
J.L.B. Culley ◽  
M.A. McGovern ◽  
W.E. Curnoe

2009 ◽  
Vol 103 (1) ◽  
pp. 158-164 ◽  
Author(s):  
Karina Maria Vieira Cavalieri ◽  
Alvaro Pires da Silva ◽  
Cassio Antonio Tormena ◽  
Tairone Paiva Leão ◽  
Anthony R. Dexter ◽  
...  

2015 ◽  
Vol 29 (4) ◽  
pp. 405-412 ◽  
Author(s):  
Diego Sánchez de Cima ◽  
Anne Luik ◽  
Endla Reintam

Abstract For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.


2018 ◽  
Vol 82 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Antonio C. A. Carmeis Filho ◽  
Carlos A. C. Crusciol ◽  
Tiara M. Guimarães ◽  
Juliano C. Calonego ◽  
Claudio H. M. da Costa

2014 ◽  
Vol 38 (1) ◽  
pp. 262-271 ◽  
Author(s):  
Edson Campanhola Bortoluzzi ◽  
Guilherme Luis Parize ◽  
Jackson Korchagin ◽  
Vanderlei Rodrigues da Silva ◽  
Danilo dos Santos Rheinheimer ◽  
...  

Analyzing the soil near crop roots may reveal limitations to growth and yield even in a no-tillage system. The purpose of the present study was to relate the chemical and physical properties of soil under a no-tillage system to soybean root growth and plant yield after five years of use of different types of limestone and forms of application. A clayey Oxisol received application of dolomitic and calcitic limestones and their 1:1 combination in two forms: surface application, maintained on the soil surface; and incorporated, applied on the surface and incorporated mechanically. Soil physical properties (resistance to mechanical penetration, soil bulk density and soil aggregation), soil chemical properties (pH, exchangeable cations, H+Al, and cation exchange capacity) and plant parameters (root growth system, soybean grain yield, and oat dry matter production) were evaluated five years after setting up the experiment. Incorporation of lime neutralized exchangeable Al up to a depth of 20 cm without affecting the soil physical properties. The soybean root system reached depths of 40 cm or more with incorporated limestone, increasing grain yield an average of 31 % in relation to surface application, which limited the effect of lime up to a depth of 5 cm and root growth up to 20 cm. It was concluded that incorporation of limestone at the beginning of a no-tillage system ensures a favorable environment for root growth and soybean yield, while this intervention does not show long-term effects on soil physical properties under no-tillage. This suggests that there is resilience in the physical properties evaluated.


Sign in / Sign up

Export Citation Format

Share Document