Evaluating pixel and object based image classification techniques for mapping plant invasions from UAV derived aerial imagery: Harrisia pomanensis as a case study

Author(s):  
Madodomzi Mafanya ◽  
Philemon Tsele ◽  
Joel Botai ◽  
Phetole Manyama ◽  
Barend Swart ◽  
...  
2020 ◽  
Vol 29 (2) ◽  
pp. 174
Author(s):  
Derek McNamara ◽  
William Mell ◽  
Alexander Maranghides

We compare the use of post-fire aerial imagery to ground-based assessment for identifying building destruction and damage at the 2012 Colorado Waldo Canyon Fire. We also compare active-fire defensive actions identified via manual and automated post-fire image classification to defensive actions documented from ground-based assessments (witness discussions, vehicle logs and images). For building destruction, manual and automatic image classification compared favourably to ground-based assessment, with low errors of commission (0.0–0.4%) and omission (0–1.2%). For building damage, classifying imagery manually had significant errors of commission and omission (59.0% and 57.9%) because ground-based assessments missed roof damage and image classification excluded interior and side damage, indicating the need for both techniques. Classifying imagery automatically for indicators of active-fire water suppression on buildings has Kappa statistics indicating a substantial agreement with documented water suppression. Manual and automatic image classification underestimated the full extent of documented defensive actions but showed a statistically significant dependence between fire cessation and defensive actions. These results show post-fire imagery to be a useful addition to other techniques for identifying building damage, destruction and defensive actions. Also demonstrated is the importance of accounting for defensive actions and other factors in wildland–urban interface fire studies.


Author(s):  
Khushbu Maurya ◽  
Seema Mahajan ◽  
Nilima Chaube

AbstractMangrove forests are considered to be the most productive ecosystem yet vanishing rapidly over the world. They are mostly found in the intertidal zone and sheltered by the seacoast. Mangroves have potential socio-economic benefits such as protecting the shoreline from storm and soil erosion, flood and flow control, acting as a carbon sink, provides a fertile breeding ground for marine species and fauna. It also acts as a source of income by providing various forest products. Restoration and conservation of mangrove forests remain a big challenge due to the large and inaccessible areas covered by mangroves forests which makes field assessment difficult and time-consuming. Remote sensing along with various digital image classification approaches seem to be promising in providing better and accurate results in mapping and monitoring the mangroves ecosystem. This review paper aims to provide a comprehensive summary of the work undertaken, and addresses various remote sensing techniques applied for mapping and monitoring of the mangrove ecosystem, and summarize their potential and limitation. For that various digital image classification techniques are analyzed and compared based on the type of image used with its spectral resolution, spatial resolution, and other related image features along with the accuracy of the classification to derive specific class information related to mangroves. The digital image classification techniques used for mangrove mapping and monitoring in various studies can be classified into pixel-based, object-based, and knowledge-based classifiers. The various satellite image data analyzed are ranged from light detection and ranging (LiDAR), hyperspectral and multispectral optical imagery, synthetic aperture radar (SAR), and aerial imagery. Supervised state of the art machine learning/deep machine learning algorithms which use both pixel-based and object-based approaches and can be combined with the knowledge-based approach are widely used for classification purpose, due to the recent development and evolution in these techniques. There is a huge future scope to study the performance of these classification techniques in combination with various high spatial and spectral resolution optical imageries, SAR and LiDAR, and also with multi-sensor, multiresolution, and temporal data.


Author(s):  
A. Sabuncu ◽  
Z. D. Uca Avci ◽  
F. Sunar

Earthquakes are the most destructive natural disasters, which result in massive loss of life, infrastructure damages and financial losses. Earthquake-induced building damage detection is a very important step after earthquakes since earthquake-induced building damage is one of the most critical threats to cities and countries in terms of the area of damage, rate of collapsed buildings, the damage grade near the epicenters and also building damage types for all constructions. Van-Ercis (Turkey) earthquake (Mw= 7.1) was occurred on October 23th, 2011; at 10:41 UTC (13:41 local time) centered at 38.75 N 43.36 E that places the epicenter about 30 kilometers northern part of the city of Van. It is recorded that, 604 people died and approximately 4000 buildings collapsed or seriously damaged by the earthquake. <br><br> In this study, high-resolution satellite images of Van-Ercis, acquired by Quickbird-2 (© Digital Globe Inc.) after the earthquake, were used to detect the debris areas using an object-based image classification. Two different land surfaces, having homogeneous and heterogeneous land covers, were selected as case study areas. As a first step of the object-based image processing, segmentation was applied with a convenient scale parameter and homogeneity criterion parameters. As a next step, condition based classification was used. In the final step of this preliminary study, outputs were compared with streetview/ortophotos for the verification and evaluation of the classification accuracy.


Author(s):  
A. Sabuncu ◽  
Z. D. Uca Avci ◽  
F. Sunar

Earthquakes are the most destructive natural disasters, which result in massive loss of life, infrastructure damages and financial losses. Earthquake-induced building damage detection is a very important step after earthquakes since earthquake-induced building damage is one of the most critical threats to cities and countries in terms of the area of damage, rate of collapsed buildings, the damage grade near the epicenters and also building damage types for all constructions. Van-Ercis (Turkey) earthquake (Mw= 7.1) was occurred on October 23th, 2011; at 10:41 UTC (13:41 local time) centered at 38.75 N 43.36 E that places the epicenter about 30 kilometers northern part of the city of Van. It is recorded that, 604 people died and approximately 4000 buildings collapsed or seriously damaged by the earthquake. &lt;br&gt;&lt;br&gt; In this study, high-resolution satellite images of Van-Ercis, acquired by Quickbird-2 (© Digital Globe Inc.) after the earthquake, were used to detect the debris areas using an object-based image classification. Two different land surfaces, having homogeneous and heterogeneous land covers, were selected as case study areas. As a first step of the object-based image processing, segmentation was applied with a convenient scale parameter and homogeneity criterion parameters. As a next step, condition based classification was used. In the final step of this preliminary study, outputs were compared with streetview/ortophotos for the verification and evaluation of the classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document