scholarly journals Homological dimensions and regular rings

2009 ◽  
Vol 322 (10) ◽  
pp. 3451-3458 ◽  
Author(s):  
Alina Iacob ◽  
Srikanth B. Iyengar
2015 ◽  
Vol 15 (02) ◽  
pp. 1650030 ◽  
Author(s):  
Jiangsheng Hu ◽  
Haiyu Liu ◽  
Yuxian Geng

In this paper, we study the class of rings in which every pure ideal is projective. We refer to rings with this property as PIP-rings. Some properties and examples of PIP-rings are given. When R is a PIP-ring, some new homological dimensions for complexes are given. As applications, we give some new characterizations of von Neumann regular rings, F-rings and semisimple Artinian rings.


2009 ◽  
Vol 08 (05) ◽  
pp. 601-615
Author(s):  
JOHN D. LAGRANGE

If {Ri}i ∈ I is a family of rings, then it is well-known that Q(Ri) = Q(Q(Ri)) and Q(∏i∈I Ri) = ∏i∈I Q(Ri), where Q(R) denotes the maximal ring of quotients of R. This paper contains an investigation of how these results generalize to the rings of quotients Qα(R) defined by ideals generated by dense subsets of cardinality less than ℵα. The special case of von Neumann regular rings is studied. Furthermore, a generalization of a theorem regarding orthogonal completions is established. Illustrative example are presented.


2011 ◽  
Vol 39 (9) ◽  
pp. 3242-3252 ◽  
Author(s):  
Najib Mahdou ◽  
Mohammed Tamekkante ◽  
Siamak Yassemi

Author(s):  
Ming Fang ◽  
Wei Hu ◽  
Steffen Koenig

AbstractGroup algebras of symmetric groups and their Hecke algebras are in Schur-Weyl duality with classical and quantised Schur algebras, respectively. Two homological dimensions, the dominant dimension and the global dimension, of the indecomposable summands (blocks) of these Schur algebras S(n, r) and $$S_q(n,r)$$ S q ( n , r ) with $$n \geqslant r$$ n ⩾ r are determined explicitly, using a result on derived invariance in Fang, Hu and Koenig (J Reine Angew Math 770:59–85, 2021).


2019 ◽  
Vol 18 (02) ◽  
pp. 1950021
Author(s):  
Tugce Pekacar Calci ◽  
Huanyin Chen

In this paper, we introduce a new notion which lies properly between strong [Formula: see text]-regularity and pseudopolarity. A ring [Formula: see text] is feckly polar if for any [Formula: see text] there exists [Formula: see text] such that [Formula: see text] Many structure theorems are proved. Further, we investigate feck polarity for triangular matrix and matrix rings. The relations among strongly [Formula: see text]-regular rings, pseudopolar rings and feckly polar rings are also obtained.


1976 ◽  
Vol 4 (9) ◽  
pp. 811-821 ◽  
Author(s):  
Freddy Van Oystaeyen ◽  
Jan Van Geel
Keyword(s):  

1993 ◽  
Vol 21 (11) ◽  
pp. 4173-4177 ◽  
Author(s):  
Andrew B. Carson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document