scholarly journals Ramification theory for Artin–Schreier extensions of valuation rings

2016 ◽  
Vol 456 ◽  
pp. 355-389 ◽  
Author(s):  
Vaidehee Thatte
1971 ◽  
Vol 41 ◽  
pp. 149-168 ◽  
Author(s):  
Susan Williamson

The notions of tame and wild ramification lead us to make the following definition.Definition. The quotient field extension of an extension of discrete rank one valuation rings is said to be fiercely ramified if the residue class field extension has a nontrivial inseparable part.


2000 ◽  
Vol 52 (6) ◽  
pp. 1269-1309 ◽  
Author(s):  
Luca Spriano

AbstractWe study extensions L/K of complete discrete valuation fields K with residue field of characteristic p > 0, which we do not assume to be perfect. Our work concerns ramification theory for such extensions, in particular we show that all classical properties which are true under the hypothesis “the residue field extensionis separable” are still valid under the more general hypothesis that the valuation ring extension is monogenic. We also show that conversely, if classical ramification properties hold true for an extension L/K, then the extension of valuation rings is monogenic. These are the “well ramified” extensions. We show that there are only three possible types of well ramified extensions and we give examples. In the last part of the paper we consider, for the three types, Kato’s generalization of the conductor, which we show how to bound in certain cases.


1972 ◽  
Vol 46 ◽  
pp. 97-109
Author(s):  
Susan Williamson

Let k denote the quotient field of a complete discrete rank one valuation ring R of unequal characteristic and let p denote the characteristic of R̅; assume that R contains a primitive pth root of unity, so that the absolute ramification index e of R is a multiple of p — 1, and each Gallois extension K ⊃ k of degree p may be obtained by the adjunction of a pth root.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Le Quang Ham ◽  
Nguyen Van The ◽  
Phuc D. Tran ◽  
Le Anh Vinh

AbstractLet {\mathcal{R}} be a finite valuation ring of order {q^{r}}. In this paper, we prove that for any quadratic polynomial {f(x,y,z)\in\mathcal{R}[x,y,z]} that is of the form {axy+R(x)+S(y)+T(z)} for some one-variable polynomials {R,S,T}, we have|f(A,B,C)|\gg\min\biggl{\{}q^{r},\frac{|A||B||C|}{q^{2r-1}}\bigg{\}}for any {A,B,C\subset\mathcal{R}}. We also study the sum-product type problems over finite valuation ring {\mathcal{R}}. More precisely, we show that for any {A\subset\mathcal{R}} with {|A|\gg q^{r-\frac{1}{3}}} then {\max\{|AA|,|A^{d}+A^{d}|\}}, {\max\{|A+A|,|A^{2}+A^{2}|\}}, {\max\{|A-A|,|AA+AA|\}\gg|A|^{\frac{2}{3}}q^{\frac{r}{3}}}, and {|f(A)+A|\gg|A|^{\frac{2}{3}}q^{\frac{r}{3}}} for any one variable quadratic polynomial f.


Author(s):  
Benjamin Antieau ◽  
Rankeya Datta
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document