Hydrogen-storage materials dispersed into nanoporous substrates studied through incoherent inelastic neutron scattering

2012 ◽  
Vol 538 ◽  
pp. 91-99 ◽  
Author(s):  
D. Colognesi ◽  
L. Ulivi ◽  
M. Zoppi ◽  
A.J. Ramirez-Cuesta ◽  
A. Orecchini ◽  
...  
2010 ◽  
Vol 1262 ◽  
Author(s):  
Maria Helena Braga ◽  
Michael Joseph Wolverton ◽  
Anna Lobet-Megias ◽  
Luc L. Daemen

AbstractCu-Li-Mg-(H,D) was studied as an example of destabilizer of the Ti-(H,D) system. A Cu-Li-Mg alloy was prepared resulting in the formation of a system with 60.5 at% of CuLi0.08Mg1.92, 23.9 at% of CuMg2 and 15.6 at% of Cu2Mg. Titanium was added to a fraction of this mixture so that 68.2 at% (47.3 wt%) of the final mixture was Ti. The mixture was ground and kept at 200 °C/473 K for 7h under H2 or 9h under D2 at P = 34 bar. Under those conditions, neutron powder diffraction shows the formation of TiD2, as well as of the deuteride of CuLi0.08Mg1.92. Similarly inelastic neutron scattering shows that at 10 K TiH2 is present in the sample, together with the hydride of CuLi0.08Mg1.92. Interestingly, at 10 K TiH2 is very clearly detected and at 300 K TiH2 is still clearly present as indicated by the neutron vibrational spectrum, but CuLi0.08Mg1.92-H is not detected anymore. These results indicate that Ti(H,D)2 is possibly formed by diffusion of hydrogen from the Cu-Li-Mg-(H,D) alloys. This is an intriguing result since TiH2 is normally synthesized from the metal at T > 400°C/673 K (and most commonly at T ˜ 700 °C/973 K). In the presence of CuLi0.08Mg1.92, TiH2 forms at a temperature that is 300 – 400 K lower than that needed to synthesize it just from the elements.


1995 ◽  
Vol 400 ◽  
Author(s):  
R. M. Stroud ◽  
A. M. Viano ◽  
E. H. Majzoub ◽  
P. C. Gibbons ◽  
K. F. Kelton

AbstractTitanium-based icosahedral phases constitute the second largest class of quasicrystals. In contrast with other Ti-based icosahedral phases (i-phases), Ti-Zr-Ni i-phases are well ordered and their formation is inhibited by the presence of Si and O, elements that stabilize the Ti-3d transition metal quasicrystals. We present x-ray and DSC data that suggest that Ti-Zr-Ni i-phases form a different class of titanium-based quasicrystals that are closely related to the MgZn2 Laves phase. The DSC data also suggest that the i-phase may be stable in these alloys. The ability of Ti-Zr-Ni i-phases to absorb up to 62 atomic % of hydrogen is presented and discussed. This opens new avenues of investigation of the structure and dynamics of quasiperiodic phases using elastic and inelastic neutron scattering and nuclear magnetic resonance and may point to potential uses for quasicrystals in hydrogen storage applications.


2009 ◽  
Vol 19 (1) ◽  
pp. 24-30 ◽  
Author(s):  
Akihiko MACHIDA ◽  
Toshiya OTOMO ◽  
Takanori HATTORI ◽  
Hiroshi FUKAZAWA

1992 ◽  
Vol 2 (10) ◽  
pp. 1929-1939 ◽  
Author(s):  
Mariette Barthes ◽  
Juegen Eckert ◽  
Susanna W. Johnson ◽  
Jacques Moret ◽  
Basil I. Swanson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document