Community-scale composting for food waste: A life-cycle assessment-supported case study

2020 ◽  
Vol 261 ◽  
pp. 121220 ◽  
Author(s):  
Zi Xiang Keng ◽  
Siewhui Chong ◽  
Chee Guan Ng ◽  
Nur Izzati Ridzuan ◽  
Svenja Hanson ◽  
...  
2021 ◽  
Vol 122 ◽  
pp. 107319
Author(s):  
Wei Chen ◽  
Jinglan Hong ◽  
Chengxin Wang ◽  
Lu Sun ◽  
Tianzuo Zhang ◽  
...  

2021 ◽  
Vol 167 ◽  
pp. 105318
Author(s):  
Giovanna Croxatto Vega ◽  
Joshua Sohn ◽  
Juliën Voogt ◽  
Morten Birkved ◽  
Stig Irving Olsen ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 6894
Author(s):  
Shakira R. Hobbs ◽  
Tyler M. Harris ◽  
William J. Barr ◽  
Amy E. Landis

The environmental impacts of five waste management scenarios for polylactic acid (PLA)-based bioplastics and food waste were quantified using life cycle assessment. Laboratory experiments have demonstrated the potential for a pretreatment process to accelerate the degradation of bioplastics and were modeled in two of the five scenarios assessed. The five scenarios analyzed in this study were: (1a) Anaerobic digestion (1b) Anaerobic digestion with pretreatment; (2a) Compost; (2a) Compost with pretreatment; (3) Landfill. Results suggested that food waste and pretreated bioplastics disposed of with an anaerobic digester offers life cycle and environmental net total benefits (environmental advantages/offsets) in several areas: ecotoxicity (−81.38 CTUe), eutrophication (0 kg N eq), cumulative energy demand (−1.79 MJ), global warming potential (0.19 kg CO2), and human health non-carcinogenic (−2.52 CTuh). Normalized results across all impact categories show that anaerobically digesting food waste and bioplastics offer the most offsets for ecotoxicity, eutrophication, cumulative energy demand and non-carcinogenic. Implications from this study can lead to nutrient and energy recovery from an anaerobic digester that can diversify the types of fertilizers and decrease landfill waste while decreasing dependency on non-renewable technologies. Thus, using anaerobic digestion to manage bioplastics and food waste should be further explored as a viable and sustainable solution for waste management.


NanoEthics ◽  
2020 ◽  
Vol 14 (3) ◽  
pp. 271-283
Author(s):  
Christopher Nathan ◽  
Stuart Coles

AbstractIt has become a standard for researchers carrying out biotechnology projects to do a life cycle assessment (LCA). This is a process for assessing the environmental impact of a technology, product or policy. Doing so is no simple matter, and in the last decades, a rich set of methodologies has developed around LCA. However, the proper methods and meanings of the process remain contested. Preceding the development of the international standard that now governs LCA, there was a lively debate in the academic community about the inclusion of ‘values’ within the process. We revisit this debate and reconsider the way forward for LCA. We set out ways in which those outside of science can provide input into LCAs by informing the value assumptions at stake. At the same time, we will emphasize that the role of those within the scientific community need not (and sometimes, will inevitably not) involve value-free inquiry. We carry out this exploration through a case study of a particular technology project that sought ways to produce industrial and consumer products from algal oils.


Sign in / Sign up

Export Citation Format

Share Document