alternative fuels
Recently Published Documents


TOTAL DOCUMENTS

2242
(FIVE YEARS 743)

H-INDEX

47
(FIVE YEARS 11)

2022 ◽  
Vol 253 ◽  
pp. 115175
Author(s):  
Qidong Xu ◽  
Zengjia Guo ◽  
Lingchao Xia ◽  
Qijiao He ◽  
Zheng Li ◽  
...  

2022 ◽  
Vol 12 (2) ◽  
pp. 740
Author(s):  
Matteo Prussi ◽  
Calliope Panoutsou ◽  
David Chiaramonti

Modern economies rely on the efficiency of their transportation sector; however, the environmental impact of the sector remains a growing concern. Among the various proposed solutions, the production and deployment of alternative fuels is a major option. However, concerns exist that the actual availability of sustainable feedstock might lower the current level of ambition. This paper addresses this issue by reviewing recent studies and policy targets, to match forecasts for expected demand and feedstock availability for road, aviation, and maritime sectors in the EU in 2030. The existing literature is fragmented and based on a variety of different approaches, and a consistent assessment of the potential overall demand for transport is still missing. In spite of the challenges posed by the numerous uncertainties, this research provides an estimate of potential European demand for alternative fuels that ranges between 20 and 33 Mtoe. We aimed to answer the question about the availability of sustainable feedstock to cover this potential demand. The analysis confirmed, even under very conservative assumptions, that feedstock may not be the major barrier today. Other issues, such as the feedstock costs, the price volatilities, the existing logistical infrastructures, etc., are relevant aspects contributing to the puzzle. Whilst feedstock is present across European regions, a critical element which requires detailed analysis at the implementation value chain level is the effectiveness of its sustainable mobilisation alongside the synergies and trade-offs that may arise.


2022 ◽  
pp. 009524432110588
Author(s):  
Meenakshi Halada Nandakrishnan ◽  
Shruthi Balakrishna ◽  
Preeti Nair

Alcohols are increasingly being looked upon as the most viable alternative to the conventional sources of energy. Methanol is the first member of the alcohol family and can be easily synthesized from syngas. It is an attractive blend to gasoline due to its advantageous properties. There is a necessity to make sure that the infrastructure is ready to adapt these alternative fuels. Hence, the aim of this study is to assess the degradation of widely used thermoplastics in fuel tanks, pipes, and the fuel injection system, namely, polytetrafluoroethylene (PTFE), polyethyleneterephthalate (PET), and high density polyethylene (HDPE) post exposure to methanol–gasoline blends (P100, M15, and M30) for a period of 4, 10, and 30 days. The effects of the exposure were examined by comparing changes in gain/loss of mass, hardness, elongation, and tensile strength. The surface morphology changes of the polymeric coupons were characterized by scanning electron microscopy and their elemental analysis was done by energy dispersive X-ray spectroscopy. The studied materials were found to gain mass in the order HDPE > PTFE >PET. The decrease in hardness was found to be more in HDPE followed by PTFE and PET. PTFE and PET showed reduction in strength but an increase in tensile strength was observed for HDPE post exposure to fuel blend. Highest change in elongation was found in HDPE followed by PTFE and PET. The changes were found to be the least in P100 followed by M15 and maximum in M30 blends for all immersion periods.


2022 ◽  
pp. 146808742110667
Author(s):  
Akhilendra Pratap Singh ◽  
Ashutosh Jena ◽  
Avinash Kumar Agarwal

In the last decade, advanced combustion techniques of the low-temperature combustion (LTC) family have attracted researchers because of their excellent emission characteristics; however, combustion control remains the main issue for the LTC modes. The objective of this study was to explore premixed charge compression ignition (PCCI) combustion mode using a double pilot injection (DPI; pilot-pilot-main) strategy to achieve superior combustion control and to tackle the soot-oxides of nitrogen (NOx) trade-off. Experiments were carried out in a single-cylinder research engine fueled with 20% v/v biodiesel blended with mineral diesel (B20) and 40% v/v biodiesel blended with mineral diesel (B40) vis-à-vis baseline mineral diesel. Engine speed and rate of fuel-mass injected were maintained constant at 1500 rpm and 0.6 kg/h mineral diesel equivalent, respectively. Pilot injection timings (at 45° and 35° before top dead center (bTDC)) and fuel quantities were fixed, while three fuel injection pressures (FIPs) and four different start of the main injection (SoMI) timings were investigated in this study. Results showed that multiple pilot injections resulted in a stable PCCI combustion mode, making it suitable for higher engine loads. For all test fuels, advancing SoMI timings led to relatively lesser knocking; however, engine performance characteristics degraded at advanced SoMI timings. B40 exhibited relatively superior engine performance among different test fuels at lower FIP; however, the difference in engine performance was insignificant at higher FIPs. Fuel injection parameters showed a significant effect on emissions, especially on the NOx and particulates. Advancing SoMI timing resulted in 20%–50% lower particulates emissions with a slight NOx increase; however, the differences in emissions at different SoMI timings reduced at higher FIPs. Somewhat higher particulates from biodiesel blends were a critical observation of this study, which was more dominant at advanced SoMI timings. Qualitative correlation between NOx-total particulate mass (TPM) was another critical analysis, which exhibited the relative importance of different fuel injection parameters for other alternative fuels. Overall, B20 at 700 bar FIP and 20° SoMI timing emerged as the most promising proposition with some penalty in CO emission.


2022 ◽  
Author(s):  
Zhanhong Xiang ◽  
Karnsiree Chen ◽  
Charles McEnally ◽  
Lisa Pfefferle

With the growing importance of climate change, soot emissions from engines have been receiving increasing attention since black carbon is the second largest source of global warming. A sooting tendency can be used to quantify the extent of soot formation in a combustion device for a given fuel molecule, and therefore to quantify the soot reduction benefits of alternative fuels. However real fuels are complex mixtures of multiple components. In this work, we have used experimental methods to investigate how the sooting tendency of a blended fuel mixture is related to the sooting tendencies of the individual components. A test matrix was formulated that includes sixteen mixtures of six components that are representative of the main categories of hydrocarbons in diesel (eicosane (ECO) for alkanes, isocetane (ICE) for isoalkanes, butylcyclohexane (BCH) for cycloalkanes, 1-methylnaphthalene (1MN) for aromatics, tetralin for naphthoaromatics, and methyl-decanoate (MDC) for oxygenates). Most of the mixtures contain three to five components. The sooting tendency of each mixture was characterized by yield sooting index (YSI), which is based on the soot yield when a methane/air nonpremixed flame is doped with 1000 ppm of the test fuel. The YSIs were measured experimentally. The results show that the blending behavior is linear, i.e., the YSI of the mixtures is the mole-fraction-weighted average of the component YSIs. Experimental results have shown that the sooting tendency of a fuel mixture can be accurately estimated as the linear combination of the individual components. In addition, mass density of the mixtures is also measured, and a linear blending rule is applied to test whether mixing rules exist for mass density of diesel mixtures in this study. Results also have shown that the mixing rule tested in this study is valid and mass density of a mixture can be accurately estimated from the linear combination of the individual components.


2022 ◽  
Vol 12 (2) ◽  
pp. 597
Author(s):  
Alexander Barke ◽  
Timo Bley ◽  
Christian Thies ◽  
Christian Weckenborg ◽  
Thomas S. Spengler

The use of drop-in capable alternative fuels in aircraft can support the European aviation sector to achieve its goals for sustainable development. They can be a transitional solution in the short and medium term, as their use does not require any structural changes to the aircraft powertrain. However, the production of alternative fuels is often energy-intensive, and some feedstocks are associated with harmful effects on the environment. In addition, alternative fuels are often more expensive to produce than fossil kerosene, which can make their use unattractive. Therefore, this paper analyzes the environmental and economic impacts of four types of alternative fuels compared to fossil kerosene in a well-to-wake perspective. The fuels investigated are sustainable aviation fuels produced by power-to-liquid and biomass-to-liquid pathways. Life cycle assessment and life cycle costing are used as environmental and economic assessment methods. The results of this well-to-wake analysis reveal that the use of sustainable aviation fuels can reduce the environmental impacts of aircraft operations. However, an electricity mix based on renewable energies is needed to achieve significant reductions. In addition, from an economic perspective, the use of fossil kerosene ranks best among the alternatives. A scenario analysis confirms this result and shows that the production of sustainable aviation fuels using an electricity mix based solely on renewable energy can lead to significant reductions in environmental impact, but economic competitiveness remains problematic.


Author(s):  
Arief Setiawan

Tujuan dari penelitian ini adalah untuk melakukan Life Cycle Assessment dalam produksi semen. Untuk mendapatkan perbaikan dampak lingkungan, maka pengkajian harus menemukan hotspot. Perbaikan tersebut diharapkan dapat menemukan komposisi bahan bakar yang lebih baik untuk mengurangi dampaknya dengan menggunakan varian bahan bakar alternatif. Lingkup LCA meliputi penambangan hingga pengolahan semen (cradle to gate). Hasil penelitian menunjukkan nilai 1 ton semen : potensi dampak pemanasan global adalah 760,11 kg CO2-eq, potensi pengasaman 1,32 kg SO2-eq, potensi oksidan fotokimia 0,0508 kg C2H4-eq, potensi toksisitas manusia 123,97 kg 1,4-DB-eq dan potensi penipisan abiotik 2181,75 MJ. Data menunjukkan bahwa penyumbang dampak terbesar adalah unit kiln. Energi yang digunakan di unit proses kiln menyumbang 92,46% dari total intensitas energi dalam proses produksi semen. Hasil penelitian menunjukkan bahwa energi yang dibutuhkan untuk menghasilkan produk semen 1 ton adalah 3,27 GJ dengan unit proses kiln memiliki kontribusi penggunaan energi tertinggi dengan nilai 3,03 GJ/ton produk. Studi ini terdiri dari empat skenario untuk mengetahui praktik komposisi bahan bakar terbaik yang direkomendasikan di area hotspot.


Trudy NAMI ◽  
2022 ◽  
pp. 53-59
Author(s):  
A. N. Kozlov ◽  
M. I. Araslanov

Introduction (problem statement and relevance). The depletion of oil fuels reserves and the steady growth of their consumption will require new solutions in the development of technologies based on renewable energy sources. The study of the possible alternative fuels use in internal combustion engines is a complex scientific task, including the research of the alternative fuels effect on the power plants operation efficiency.The purpose of the study was to obtain the speed characteristics of a diesel engine operating on ethyl alcohol and rapeseed oil.Methodology and research methods. An air-cooled with volumetric mixture formation tractor diesel engine of dimension 2Ch 10.5/12.0 was selected as an object of research. The study was carried out by a comparative method. To measure the speed characteristic a fixed cyclic fuel supply was applied after the engine reaching the nominal operating mode at a crankshaft speed of 1800 min-1 and an average effective pressure in the cylinder of 0.588 MPa. This approach, with the all-mode regulator of the fuel pump turned off, made it possible to identify the main regularities of intra-cylinder processes at different speed modes of engine operation.Scientific novelty and results. The article presents the bench tests results of a diesel engine operating at various speed modes on ethanol and rapeseed oil, and analyzes in detail the main indicators of the combustion process and the effective engine performance in comparison to the use of traditional fuel. The practical significance lies in the possibility of using the obtained results to improve the diesel engines operation on alternative renewable fuels.


2022 ◽  
Vol 334 ◽  
pp. 06001
Author(s):  
Massimo Rivarolo ◽  
Federico Iester ◽  
Aristide F. Massardo

This paper presents an innovative algorithm to compare traditional and innovative energy systems onboard for maritime applications. The solutions are compared adopting a multi-criteria method, considering four parameters (weight, volume, cost, emissions) and their relevance according to the kind of ship and navigation route. The algorithm, which includes a large and updated database of market solutions, leads to the implementation of HELM (Helper for Energy Layouts in Maritime applications) tool. HELM was conceived to support the design of maritime systems: it chooses the best technology comparing traditional marine diesel engines, propulsion systems with alternative fuels (methanol, ammonia, LNG) and innovative low-emission technologies (fuel cell and batteries). Two case studies are investigated: (i) a small passenger ship for short routes (ii) and a large size ro-ro cargo ship. For case (i), fuel cells represent a competitive solution, in particular considering navigation in emission control areas. For case study (ii) Internal Combustion Engines shows are the best solution. The evaluation of alternative fuels is performed, considering a sensitivity analysis on emissions’ importance: methanol, LNG, and ammonia are promising solutions. For case (i), the installation of electrical batteries is also evaluated to analyse potential advantages to reduce the amount of H2 stored onboard.


Author(s):  
S.N. Devyanin ◽  
V.A. Markov ◽  
A.G. Levshin ◽  
T.P. Kobozeva ◽  
V.A. Neverov

One of the most important areas of internal combustion engine improvement is its adaptation to work on alternative fuels. Motor fuels obtained from renewable plant raw materials are considered to be promising alternative fuels. The article considers the possibility of using soybean oil as an ecological additive in petroleum diesel fuel. The features of soybean oil production and the physico-chemical properties of soybean oil and a mixture containing 80 % (by volume) of petroleum diesel fuel and 20 % of soybean oil are researched. Computational studies of the processes of fuel atomization and mixture formation in the D-245 diesel engine operating on mixtures of petroleum diesel fuel and seed oil have been performed. Experimental studies of the D-245 diesel engine operating on petroleum diesel fuel and the specified blended fuel have been carried out. Conversion of a diesel engine from petroleum fuel to mixed one leads to a decrease in integral emissions per test cycle: nitrogen oxides by 19.1 %, carbon monoxide — by 10.5 %, unburned hydrocarbons - by 8.9 %.


Sign in / Sign up

Export Citation Format

Share Document