Design optimization of noise barrier tunnels through component reuse: Minimization of costs and CO2 emissions using multi-objective genetic algorithm

2021 ◽  
Vol 298 ◽  
pp. 126697
Author(s):  
Seongjun Kim ◽  
Sung-Ah Kim
2011 ◽  
Vol 264-265 ◽  
pp. 1719-1724 ◽  
Author(s):  
A.K.M. Mohiuddin ◽  
Md. Ataur Rahman ◽  
Yap Haw Shin

This paper aims to demonstrate the effectiveness of Multi-Objective Genetic Algorithm Optimization and its practical application on the automobile engine valve timing where the variation of performance parameters required for finest tuning to obtain the optimal engine performances. The primary concern is to acquire the clear picture of the implementation of Multi-Objective Genetic Algorithm and the essential of variable valve timing effects on the engine performances in various engine speeds. Majority of the research works in this project were in CAE software environment and method to implement optimization to 1D engine simulation. The paper conducts robust design optimization of CAMPRO 1.6L (S4PH) engine valve timing at various engine speeds using multiobjective genetic algorithm (MOGA) for the future variable valve timing (VVT) system research and development. This paper involves engine modelling in 1D software simulation environment, GT-Power. The GT-Power model is run simultaneously with mode Frontier to perform multiobjective optimization.


2015 ◽  
Vol 51 (6) ◽  
pp. 1363-1371 ◽  
Author(s):  
Guan Zhou ◽  
Zheng-Dong Ma ◽  
Aiguo Cheng ◽  
Guangyao Li ◽  
Jin Huang

Water SA ◽  
2020 ◽  
Vol 46 (3 July) ◽  
Author(s):  
Tiku T Tanyimboh ◽  
Alemtsehay G Seyoum

Water distribution systems are an integral part of the economic infrastructure of modern-day societies. However, previous research on the design optimization of water distribution systems generally involved few decision variables and consequently small solution spaces; piecemeal-solution methods based on pre-processing and search space reduction; and/or combinations of techniques working in concert. The present investigation was motivated by the desire to address the above-mentioned issues including those associated with the lack of high-performance computing (HPC) expertise and limited access in developing countries. More specifically, the article’s aims are, firstly, to solve a practical water distribution network design optimization problem and, secondly, to develop and demonstrate a generic multi-objective genetic algorithm capable of achieving optimal and near-optimal solutions on complex real-world design optimization problems reliably and quickly. A multi-objective genetic algorithm was developed that applies sustained and extensive exploration of the active constraint boundaries. The computational efficiency was demonstrated by the small fraction of 10-245 function evaluations relative to the size of the solution space. Highly competitive solutions were achieved consistently, including a new best solution. The water utility’s detailed distribution network model in EPANET 2 was used for the hydraulic simulations. Therefore, with some additional improvements, the optimization algorithm developed could assist practitioners in day-to-day planning and design.


Sign in / Sign up

Export Citation Format

Share Document