scholarly journals Design optimization of water distribution networks: real-world case study with penalty-free multi-objective genetic algorithm using pressure-driven simulation

Water SA ◽  
2020 ◽  
Vol 46 (3 July) ◽  
Author(s):  
Tiku T Tanyimboh ◽  
Alemtsehay G Seyoum

Water distribution systems are an integral part of the economic infrastructure of modern-day societies. However, previous research on the design optimization of water distribution systems generally involved few decision variables and consequently small solution spaces; piecemeal-solution methods based on pre-processing and search space reduction; and/or combinations of techniques working in concert. The present investigation was motivated by the desire to address the above-mentioned issues including those associated with the lack of high-performance computing (HPC) expertise and limited access in developing countries. More specifically, the article’s aims are, firstly, to solve a practical water distribution network design optimization problem and, secondly, to develop and demonstrate a generic multi-objective genetic algorithm capable of achieving optimal and near-optimal solutions on complex real-world design optimization problems reliably and quickly. A multi-objective genetic algorithm was developed that applies sustained and extensive exploration of the active constraint boundaries. The computational efficiency was demonstrated by the small fraction of 10-245 function evaluations relative to the size of the solution space. Highly competitive solutions were achieved consistently, including a new best solution. The water utility’s detailed distribution network model in EPANET 2 was used for the hydraulic simulations. Therefore, with some additional improvements, the optimization algorithm developed could assist practitioners in day-to-day planning and design.

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1606
Author(s):  
Matan Maskit ◽  
Avi Ostfeld

This study aims to develop and solve a multi-objective water distribution systems optimization problem incorporating pumps’ optimal scheduling and leakage minimization. An iterative optimization model was presented for calibrating and computing leakages in water distribution systems to recognize the critical impact of leakage control on system operation. The multi-dimensional and nonlinear optimization model, incorporating pump control, consumer demands, storage, and other water distribution systems’ components, was constructed and was minimized using a multi-objective genetic algorithm coupled with hydraulic simulations. The model was demonstrated on two example applications with increasing complexity through base runs and sensitivity analyses. Results showed that leakage minimization competes against pumping, mainly when significant differences occur between demands during low and high energy tariffs. Pumping during the periods with high electricity tariffs (when the demands are high) generated pressure distribution that decreased the overall leakage related to pump scheduling that replicated the natural inclination to pump as much as possible at low tariffs (when the demands are low). The optimal fronts were found to be very sensitive to the leakage exponent value, and changing its value indeed contradicted the balance between minimizing the leakage and the energy cost significantly. Altogether, the idea presented in this paper was found capable of facilitating the decision-makers to conveniently select between the energy-efficient pump scheduling and pump scheduling reflecting minimum leakage based on the system operator’s preferences. The research also paves the way to rebuild the optimization model by incorporating water distribution reliability and water quality that, in some cases, may also contradict the choice between energy cost and leakage minimization.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1334
Author(s):  
Mohamed R. Torkomany ◽  
Hassan Shokry Hassan ◽  
Amin Shoukry ◽  
Ahmed M. Abdelrazek ◽  
Mohamed Elkholy

The scarcity of water resources nowadays lays stress on researchers to develop strategies aiming at making the best benefit of the currently available resources. One of these strategies is ensuring that reliable and near-optimum designs of water distribution systems (WDSs) are achieved. Designing WDSs is a discrete combinatorial NP-hard optimization problem, and its complexity increases when more objectives are added. Among the many existing evolutionary algorithms, a new hybrid fast-convergent multi-objective particle swarm optimization (MOPSO) algorithm is developed to increase the convergence and diversity rates of the resulted non-dominated solutions in terms of network capital cost and reliability using a minimized computational budget. Several strategies are introduced to the developed algorithm, which are self-adaptive PSO parameters, regeneration-on-collision, adaptive population size, and using hypervolume quality for selecting repository members. A local search method is also coupled to both the original MOPSO algorithm and the newly developed one. Both algorithms are applied to medium and large benchmark problems. The results of the new algorithm coupled with the local search are superior to that of the original algorithm in terms of different performance metrics in the medium-sized network. In contrast, the new algorithm without the local search performed better in the large network.


Sign in / Sign up

Export Citation Format

Share Document