scholarly journals A ghost structure finite difference method for a fractional FitzHugh-Nagumo monodomain model on moving irregular domain

2021 ◽  
Vol 428 ◽  
pp. 110081
Author(s):  
Yongheng Wang ◽  
Li Cai ◽  
Xiaobing Feng ◽  
Xiaoyu Luo ◽  
Hao Gao
2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Zhi Zhu He ◽  
Xu Xue ◽  
Jing Liu

A three-dimensional (3D) simulation of bioheat transfer is crucial to analyze the physiological processes and evaluate many therapeutic/diagnostic practices spanning from high to low temperature medicine. In this paper we develop an efficient numerical scheme for solving 3D transient bioheat transfer equations based on the alternating direction implicit finite-difference method (ADI-FDM). An algorithm is proposed to deal with the boundary condition for irregular domain which could capture accurately the complex boundary and reduce considerably the staircase effects. Furthermore, the local adaptive mesh technology is introduced to improve the computational accuracy for irregular boundary and the domains with large temperature gradient. The detailed modification to ADI-FDM is given to accommodate such special grid structure, in particular. Combination of adaptive-mesh technology and ADI-FDM could significantly improve the computational accuracy and decrease the computational cost. Extensive results of numerical experiments demonstrate that the algorithm developed in the current work is very effective to predict the temperature distribution during hyperthermia and cryosurgery. This work may play an important role in developing a computational planning tool for hyperthermia and cryosurgery in the near future.


Author(s):  
Lucas Peixoto ◽  
Ane Lis Marocki ◽  
Celso Vieira Junior ◽  
Viviana Mariani

1991 ◽  
Vol 23 (1-3) ◽  
pp. 517-524
Author(s):  
M. Kanoh ◽  
T. Kuroki ◽  
K. Fujino ◽  
T. Ueda

The purpose of the paper is to apply two methods to groundwater pollution in porous media. The methods are the weighted finite difference method and the boundary element method, which were proposed or developed by Kanoh et al. (1986,1988) for advective diffusion problems. Numerical modeling of groundwater pollution is also investigated in this paper. By subdividing the domain into subdomains, the nonlinearity is localized to a small region. Computational time for groundwater pollution problems can be saved by the boundary element method; accurate numerical results can be obtained by the weighted finite difference method. The computational solutions to the problem of seawater intrusion into coastal aquifers are compared with experimental results.


Sign in / Sign up

Export Citation Format

Share Document