bioheat transfer
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 69)

H-INDEX

34
(FIVE YEARS 3)

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 580
Author(s):  
Olga I. Sokolovskaya ◽  
Ekaterina A. Sergeeva ◽  
Leonid A. Golovan ◽  
Pavel K. Kashkarov ◽  
Aleksandr V. Khilov ◽  
...  

Biodegradable and low-toxic silicon nanoparticles (SiNPs) have potential in different biomedical applications. Previous experimental studies revealed the efficiency of some types of SiNPs in tumor hyperthermia. To analyse the feasibility of employing SiNPs produced by the laser ablation of silicon nanowire arrays in water and ethanol as agents for laser tumor hyperthermia, we numerically simulated effects of heating a millimeter-size nodal basal-cell carcinoma with embedded nanoparticles by continuous-wave laser radiation at 633 nm. Based on scanning electron microscopy data for the synthesized SiNPs size distributions, we used Mie theory to calculate their optical properties and carried out Monte Carlo simulations of light absorption inside the tumor, with and without the embedded nanoparticles, followed by an evaluation of local temperature increase based on the bioheat transfer equation. Given the same mass concentration, SiNPs obtained by the laser ablation of silicon nanowires in ethanol (eSiNPs) are characterized by smaller absorption and scattering coefficients compared to those synthesized in water (wSiNPs). In contrast, wSiNPs embedded in the tumor provide a lower overall temperature increase than eSiNPs due to the effect of shielding the laser irradiation by the highly absorbing wSiNPs-containing region at the top of the tumor. Effective tumor hyperthermia (temperature increase above 42 °C) can be performed with eSiNPs at nanoparticle mass concentrations of 3 mg/mL and higher, provided that the neighboring healthy tissues remain underheated at the applied irradiation power. The use of a laser beam with the diameter fitting the size of the tumor allows to obtain a higher temperature contrast between the tumor and surrounding normal tissues compared to the case when the beam diameter exceeds the tumor size at the comparable power.


2021 ◽  
Author(s):  
Laura Namisnak ◽  
Shahab Haghayegh ◽  
Sepideh Khoshnevis ◽  
Kenneth R. Diller

Abstract Thermoregulation is a process that is essential to the maintenance of life for all warm-blooded mammalian and avian species. It sustains a constant core body temperature in the face of a wide array of environmental thermal conditions and intensity of physical activities that generate internal heat. A primary component of thermoregulatory function is the movement of heat between the body core and the surface via the circulation of blood. The peripheral vasculature acts as a forced convection heat exchanger between blood and local peripheral tissues enabling heat to be conducted to the skin surface where is may be transferred to and from the environment via conduction, convection, radiation, and/or evaporation of water as local conditions dictate. Humans have evolved a particular vascular structure in glabrous (hairless) skin that is especially well suited for heat exchange. These vessels are called arteriovenous anastomoses (AVAs) and can vasodilate to large diameters and accommodate high flow rates. We report herein a new technology based on a physiological principle that enables simple and safe access to the thermoregulatory control system that allow manipulation of thermoregulatory function. The technology operates by applying a small amount of heating local to control tissue on the body surface overlying the cerebral spine that upregulates AVA perfusion. Under this action, heat exchangers can be applied to glabrous skin, preferably on the palms and soles, to alter the temperature of elevated blood flow prior to its return to the core. Therapeutic and prophylactic applications are discussed.


2021 ◽  
Vol 136 (11) ◽  
Author(s):  
Kashif Ali Abro ◽  
Abdon Atangana ◽  
Jose Francisco Gomez-Aguilar

2021 ◽  
Vol 18 (182) ◽  
pp. 20210564
Author(s):  
Rami Ahmad El-Nabulsi

In this study, the Pennes and Cattaneo–Vernotte bioheat transfer equations in the presence of fractal spatial dimensions are derived based on the product-like fractal geometry. This approach was introduced recently, by Li and Ostoja-Starzewski, in order to explore dynamical properties of anisotropic media. The theory is characterized by a modified gradient operator which depends on two parameters: R which represents the radius of the tumour and R 0 which represents the radius of the spherical living tissue. Both the steady and unsteady states for each fractal bioheat equation were obtained and their implications on living cells in the presence of growth of a large tumour were analysed. Assuming a specific heating/cooling by a constant heat flux equivalent to the metabolic heat generation in the tissue, it was observed that the solutions of the fractal bioheat equations are robustly affected by fractal dimensions, the radius of the tumour growth and the dimensions of the living cell tissue. The ranges of both the fractal dimensions and temperature were obtained, analysed and compared with recent studies. This study confirms the importance of fractals in medicine.


Author(s):  
Ali Kabiri ◽  
Mohammad Reza Talaee

Bone grinding is used to remove the skull bone and access tumors through the nasal passage during cranial base neurosurgery. The generated heat of the spherical diamond tool propagates and could damage the nerves or coagulate the arteries blood. Little is known about the non-Fourier behavior of heat propagation during bone grinding. Therefore, this study develops an analytical model of the hyperbolic Pennes bioheat transfer equation (HPBTE) to calculate the three-dimensional temperature and necrosis in the grinding region. In vitro experimental investigations were carried out, and the contact zone temperature was measured using an infrared thermography system to validate the proposed thermal model. The results demonstrate that the HPBTE provides more reliable temperature evaluation and thermal damage than Fourier or parabolic heat transfer equation (PHTE). Due to the low thermal diffusivity of the bone, the lower grinding feed rate leads to higher temperature amplitude and a smaller radius of the affected zone in the surface and depth of the bone. Also, the intensity of bone necrosis decreases with the increase of the feed rate, and the shape of the damage zone becomes stretched. This analytical model can assess the potential risk of the surgery before clinical trials. Also, it could be used for comparing the different operating conditions to minimize bone necrosis and improve the control process in neurosurgeries.


Sign in / Sign up

Export Citation Format

Share Document