scholarly journals Extremal functions of forbidden double permutation matrices

2009 ◽  
Vol 116 (7) ◽  
pp. 1235-1244 ◽  
Author(s):  
Jesse T. Geneson
2018 ◽  
Author(s):  
Jesse Geneson

Keszegh (2009) proved that the extremal function $ex(n, P)$ of any forbidden light $2$-dimensional 0-1 matrix $P$ is at most quasilinear in $n$, using a reduction to generalized Davenport-Schinzel sequences. We extend this result to multidimensional matrices by proving that any light $d$-dimensional 0-1 matrix $P$ has extremal function $ex(n, P,d) = O(n^{d-1}2^{\alpha(n)^{t}})$ for some constant $t$ that depends on $P$. To prove this result, we introduce a new family of patterns called $(P, s)$-formations, which are a generalization of $(r, s)$-formations, and we prove upper bounds on their extremal functions. In many cases, including permutation matrices $P$ with at least two ones, we are able to show that our $(P, s)$-formation upper bounds are tight.


2011 ◽  
Vol 30 (10) ◽  
pp. 2384-2387 ◽  
Author(s):  
Hua Qiao ◽  
Wu Guan ◽  
Ming-ke Dong ◽  
Hai-ge Xiang

Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1108
Author(s):  
Olga Kudryavtseva ◽  
Aleksei Solodov

The class of holomorphic self-maps of a disk with a boundary fixed point is studied. For this class of functions, the famous Julia–Carathéodory theorem gives a sharp estimate of the angular derivative at the boundary fixed point in terms of the image of the interior point. In the case when additional information about the value of the derivative at the interior point is known, a sharp estimate of the angular derivative at the boundary fixed point is obtained. As a consequence, the sharpness of the boundary Dieudonné–Pick lemma is established and the class of the extremal functions is identified. An unimprovable strengthening of the Osserman general boundary lemma is also obtained.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Paweł Zaprawa

AbstractIn this paper, we obtain the bounds of the initial logarithmic coefficients for functions in the classes $${\mathcal {S}}_S^*$$ S S ∗ and $${\mathcal {K}}_S$$ K S of functions which are starlike with respect to symmetric points and convex with respect to symmetric points, respectively. In our research, we use a different approach than the usual one in which the coeffcients of f are expressed by the corresponding coeffcients of functions with positive real part. In what follows, we express the coeffcients of f in $${\mathcal {S}}_S^*$$ S S ∗ and $${\mathcal {K}}_S$$ K S by the corresponding coeffcients of Schwarz functions. In the proofs, we apply some inequalities for these functions obtained by Prokhorov and Szynal, by Carlson and by Efraimidis. This approach offers a additional benefit. In many cases, it is easily possible to predict the exact result and to select extremal functions. It is the case for $${\mathcal {S}}_S^*$$ S S ∗ and $${\mathcal {K}}_S$$ K S .


2020 ◽  
Vol 48 (4) ◽  
pp. 719-740
Author(s):  
Richard A. Brualdi ◽  
Geir Dahl

AbstractFor a permutation π, and the corresponding permutation matrix, we introduce the notion of discrete derivative, obtained by taking differences of successive entries in π. We characterize the possible derivatives of permutations, and consider questions for permutations with certain properties satisfied by the derivative. For instance, we consider permutations with distinct derivatives, and the relationship to so-called Costas arrays.


2018 ◽  
Vol 149 (04) ◽  
pp. 979-994 ◽  
Author(s):  
Daomin Cao ◽  
Wei Dai

AbstractIn this paper, we are concerned with the following bi-harmonic equation with Hartree type nonlinearity $$\Delta ^2u = \left( {\displaystyle{1 \over { \vert x \vert ^8}}* \vert u \vert ^2} \right)u^\gamma ,\quad x\in {\open R}^d,$$where 0 < γ ⩽ 1 and d ⩾ 9. By applying the method of moving planes, we prove that nonnegative classical solutions u to (𝒫γ) are radially symmetric about some point x0 ∈ ℝd and derive the explicit form for u in the Ḣ2 critical case γ = 1. We also prove the non-existence of nontrivial nonnegative classical solutions in the subcritical cases 0 < γ < 1. As a consequence, we also derive the best constants and extremal functions in the corresponding Hardy-Littlewood-Sobolev inequalities.


Sign in / Sign up

Export Citation Format

Share Document