permutation matrices
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 23)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 304 ◽  
pp. 196-211
Author(s):  
Richard A. Brualdi ◽  
Lei Cao
Keyword(s):  

Author(s):  
Joseph Beck ◽  
Jeffrey Brown ◽  
Alex Kaszynski ◽  
Daniel Gillaugh

Abstract Geometric mistuning models formulated from a component mode synthesis methods often require the calculation of component modes, particularly constraint and fixed interface normal modes, during substructuring. For Integrally Bladed Rotors, these calculations are required for each sector. This paper proposes methods that reuse information garnered from solving the constraint modes of a single sector on the remaining sectors to reduce memory requirements and solution times. A mesh metamorphosis tool is used to ensure finite element models match geometry obtained from a 3D optical scanner. This tool also produces a common mesh pattern from sector-to-sector. This is exploited to produce common permutation matrices and symbolic factorizations of sector stiffness matrices that are proposed for reuse in solving subsequent constraint modes. Furthermore, a drop tolerance is introduced to remove small values during constraint mode calculation to reduce memory requirements. It is proposed to reuse this dropping pattern produced from a single sector on the remaining sectors. Approaches are then extended to a parallel processing scheme to propose effective matrix partitioning methods. Finally, information gathered during the constraint mode calculations are reused during the solution of the fixed interface normal modes to improve solution time. Results show reusing permutation matrices and symbolic factorizations from sector-to-sector improves solution time and introduces no error. Using a drop tolerance is shown to reduce storage requirements of a constraint mode matrix, while reusing the dropping pattern introduces minimal error. Similarly, reusing constraint mode information in calculating normal modes greatly improves the performance.


Author(s):  
Valentin Bahier ◽  
Joseph Najnudel

AbstractWe study the limiting behavior of smooth linear statistics of the spectrum of random permutation matrices in the mesoscopic regime, when the permutation follows one of the Ewens measures on the symmetric group. If we apply a smooth enough test function f to all the determinations of the eigenangles of the permutations, we get a convergence in distribution when the order of the permutation tends to infinity. Two distinct kinds of limit appear: if $$f(0)\ne 0$$ f ( 0 ) ≠ 0 , we have a central limit theorem with a logarithmic variance; and if $$f(0) = 0$$ f ( 0 ) = 0 , the convergence holds without normalization and the limit involves a scale-invariant Poisson point process.


2021 ◽  
Author(s):  
Joseph A. Beck ◽  
Jeffrey M. Brown ◽  
Alex A. Kaszynski ◽  
Daniel L. Gillaugh

Abstract Geometric mistuning models formulated from a component mode synthesis methods often require the calculation of component modes, particularly constraint and fixed interface normal modes, during substructuring. For Integrally Bladed Rotors, these calculations are required for each sector. This paper proposes methods that reuse information garnered from solving the constraint modes of a single sector on the remaining sectors to reduce memory requirements and solution times. A mesh metamorphosis tool is used to ensure finite element models match geometry obtained from a 3D optical scanner. This tool also produces a common mesh pattern from sector-to-sector. This is exploited to produce common permutation matrices and symbolic factorizations of sector stiffness matrices that are proposed for reuse in solving subsequent constraint modes. Furthermore, a drop tolerance is introduced to remove small values during constraint mode calculation to reduce memory requirements. It is proposed to reuse this dropping pattern produced from a single sector on the remaining sectors. Approaches are then extended to a parallel processing scheme to propose effective matrix partitioning methods. Finally, information gathered during the constraint mode calculations are reused during the solution of the fixed interface normal modes to improve solution time. Results show reusing permutation matrices and symbolic factorizations from sector-to-sector improves solution time and introduces no error. Using a drop tolerance is shown to reduce storage requirements of a constraint mode matrix. Additionally, it is shown that reusing the same dropping pattern introduces minimal error without degradation in solution times. Similarly, reusing the information from constraint modes for calculating fixed interface normal modes greatly improves the performance in a shift-and-invert technique for solving eigenvalue problems.


2021 ◽  
Vol 295 (2) ◽  
pp. 78-88
Author(s):  
VLADIMIR KRASILENKO ◽  
◽  
NATALIYA YURCHUK ◽  
DIANA NIKITOVICH ◽  
◽  
...  

A The article considers the peculiarities of the application of isomorphic matrix representations for modeling the protocol of matching secret keys-permutations of significant dimension. The situation is considered when for cryptographic transformations of blocks with a length of 256 * 256 bytes, presented in the form of a matrix of a black-and-white image, it is necessary to rearrange all bytes in accordance with the matrix keys. To generate a basic matrix key and the appearance of the components KeyA and KeyB in the format of two black and white images, a software module using engineering mathematical software Mathcad is proposed. Simulations are performed, for example, with sets of fixed matrix representations. The essence of the protocol of coordination of the main matrix of permutations by the parties is considered. Also shown are software modules in Mathcad for accelerated methods that display the procedure of iterative permutations in a permutation matrix isomorphic to the elevation of the permutation matrix to the desired degree with a certain side, corresponding to specific bits of bits or other code representations of selected random numbers. It is demonstrated that the parties receive new permutation matrices after the first step of the protocol, those sent to the other party, and the identical new permutation matrices received by the parties after the second step of the protocol, ie the secret permutation matrix. Similar qualitative cryptographic transformations have been confirmed using the proposed representations of the permutation matrix based on the results of modeling matrix affine-permutation ciphers and multi-step matrix affine-permutation ciphers for different cases when the components of affine transformations are first executed in different sequences. , and then permutation using the permutation matrix, or vice versa. The model experiments performed in the study demonstrated the adequacy of the functioning of the models proposed by the protocol and methods of generating a permutation matrix and demonstrated their advantages.


Author(s):  
Samuel C. Gutekunst ◽  
David P. Williamson

The traveling salesman problem (TSP) is a fundamental problem in combinatorial optimization. Several semidefinite programming relaxations have been proposed recently that exploit a variety of mathematical structures including, for example, algebraic connectivity, permutation matrices, and association schemes. The main results of this paper are twofold. First, de Klerk and Sotirov [de Klerk E, Sotirov R (2012) Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry. Math. Programming 133(1):75–91.] present a semidefinite program (SDP) based on permutation matrices and symmetry reduction; they show that it is incomparable to the subtour elimination linear program but generally dominates it on small instances. We provide a family of simplicial TSP instances that shows that the integrality gap of this SDP is unbounded. Second, we show that these simplicial TSP instances imply the unbounded integrality gap of every SDP relaxation of the TSP mentioned in the survey on SDP relaxations of the TSP in section 2 of Sotirov [Sotirov R (2012) SDP relaxations for some combinatorial optimization problems. Anjos MF, Lasserre JB, eds., Handbook on Semidefinite, Conic and Polynomial Optimization (Springer, New York), 795–819.]. In contrast, the subtour linear program performs perfectly on simplicial instances. The simplicial instances thus form a natural litmus test for future SDP relaxations of the TSP.


2021 ◽  
Vol 12 (Special) ◽  
pp. 1-14
Author(s):  
Richard A. Brualdi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document