method of moving planes
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Rong Zhang

Abstract In this paper, we study the problem for a nonlinear elliptic system involving fractional Laplacion: (equation 1.1) where 0 < α, β < 2, p, q > 0 and max{p, q} ≥ 1, α + γ > 0, β + τ > 0, n ≥ 2. First of all, while in the subcritical case, i.e. n + α + γ − p(n − α) − (q + 1)(n − β) > 0, n + β + τ − (p + 1)(n − α) − q(n − β) > 0, we prove the nonexistence of positive solution for the above system in R n . Moreover, though Doubling Lemma to obtain the singularity estimates of the positive solution on bounded domain Ω. In addition, while in the critical case, i.e. n+α+γ −p(n−α)−(q + 1)(n−β) = 0, n+β +τ −(p+ 1)(n−α)−q(n−β) = 0, we show that the positive solution of above system are radical symmetric and decreasing about some point by using the method of Moving planes in Rn Mathematics Subject Classification (2020): 35R11, 35A10, 35B06.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Tao Sun ◽  
Hua Su

In this paper, using the method of moving planes, we study the monotonicity in some directions and symmetry of the Dirichlet problem involving the fractional Laplacian − Δ α / 2 u x = f u x , x ∈ Ω , u x > 0 , x ∈ Ω , u x = 0 , x ∈ ℝ n \ Ω , in a slab-like domain Ω = ℝ n − 1 × 0 , h ⊂ ℝ n .


2021 ◽  
Vol 26 (2) ◽  
pp. 349-362
Author(s):  
Wenwen Hou ◽  
Lihong Zhang ◽  
Ravi P. Agarwal ◽  
Guotao Wang

This paper first introduces a generalized fractional p-Laplacian operator (–Δ)sF;p. By using the direct method of moving planes, with the help of two lemmas, namely decay at infinity and narrow region principle involving the generalized fractional p-Laplacian, we study the monotonicity and radial symmetry of positive solutions of a generalized fractional p-Laplacian equation with negative power. In addition, a similar conclusion is also given for a generalized Hénon-type nonlinear fractional p-Laplacian equation.


Author(s):  
Leyun Wu ◽  
Mei Yu ◽  
Binlin Zhang

In this paper, we develop a direct method of moving planes in unbounded domains for the fractional p-Laplacians, and illustrate how this new method to work for the fractional p-Laplacians. We first proved a monotonicity result for nonlinear equations involving the fractional p-Laplacian in [Formula: see text] without any decay conditions at infinity. Second, we prove De Giorgi conjecture corresponding to the fractional p-Laplacian under some conditions. During these processes, we introduce some new ideas: (i) estimating the singular integrals defining the fractional p-Laplacian along a sequence of approximate maxima; (ii) estimating the lower bound of the solutions by constructing sub-solutions.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Phuong Le ◽  
Hoang-Hung Vo

<p style='text-indent:20px;'>By means of the method of moving planes, we study the monotonicity of positive solutions to degenerate quasilinear elliptic systems in half-spaces. We also prove the symmetry of positive solutions to the systems in strips by using similar arguments. Our work extends the main results obtained in [<xref ref-type="bibr" rid="b16">16</xref>,<xref ref-type="bibr" rid="b20">20</xref>] to the system, in which substantial differences with the single cases are presented.</p>


2021 ◽  
Vol 377 ◽  
pp. 107463
Author(s):  
Wenxiong Chen ◽  
Pengyan Wang ◽  
Yahui Niu ◽  
Yunyun Hu

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Zhenjie Li ◽  
Chunqin Zhou

<p style='text-indent:20px;'>In this paper, we investigate the nonnegative solutions of the nonlinear singular integral system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation} \left\{ \begin{array}{lll} u_i(x) = \int_{\mathbb{R}^n}\frac{1}{|x-y|^{n-\alpha}|y|^{a_i}}f_i(u(y))dy,\quad x\in\mathbb{R}^n,\quad i = 1,2\cdots,m,\\ 0&lt;\alpha&lt;n,\quad u(x) = (u_1(x),\cdots,u_m(x)),\nonumber \end{array}\right. \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ 0&lt;a_i/2&lt;\alpha $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ f_i(u) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ 1\leq i\leq m $\end{document}</tex-math></inline-formula>, are real-valued functions, nonnegative and monotone nondecreasing with respect to the independent variables <inline-formula><tex-math id="M4">\begin{document}$ u_1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ u_2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ \cdots $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ u_m $\end{document}</tex-math></inline-formula>. By the method of moving planes in integral forms, we show that the nonnegative solution <inline-formula><tex-math id="M8">\begin{document}$ u = (u_1,u_2,\cdots,u_m) $\end{document}</tex-math></inline-formula> is radially symmetric when <inline-formula><tex-math id="M9">\begin{document}$ f_i $\end{document}</tex-math></inline-formula> satisfies some monotonicity condition.</p>


Sign in / Sign up

Export Citation Format

Share Document