scholarly journals 3D positive lattice walks and spherical triangles

2020 ◽  
Vol 172 ◽  
pp. 105189 ◽  
Author(s):  
B. Bogosel ◽  
V. Perrollaz ◽  
K. Raschel ◽  
A. Trotignon
2020 ◽  
Vol 16 (3) ◽  
pp. 263-282
Author(s):  
Alexandre Eremenko ◽  
◽  
Andrei Gabrielov ◽  
Keyword(s):  

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


10.37236/1075 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Robert J. MacG. Dawson ◽  
Blair Doyle
Keyword(s):  

Sommerville and Davies classified the spherical triangles that can tile the sphere in an edge-to-edge fashion. Relaxing this condition yields other triangles, which tile the sphere but have some tiles intersecting in partial edges. This paper shows that no right triangles in a certain subfamily can tile the sphere, although multilayered tilings are possible.


Author(s):  
Glen Van Brummelen

This chapter explains how to find the area of an angle or polyhedron. It begins with a discussion of how to determine the area of a spherical triangle or polygon. The formula for the area of a spherical triangle is named after Albert Girard, a French mathematician who developed a theorem on the areas of spherical triangles, found in his Invention nouvelle. The chapter goes on to consider Euler's polyhedral formula, named after the eighteenth-century mathematician Leonhard Euler, and the geometry of a regular polyhedron. Finally, it describes an approach to finding the proportion of the volume of the unit sphere that the various regular polyhedra occupy.


2008 ◽  
Vol 14 (10-11) ◽  
pp. 1119-1126 ◽  
Author(s):  
Manuel Kauers ◽  
Doron Zeilberger
Keyword(s):  

1996 ◽  
Vol 80 (488) ◽  
pp. 369
Author(s):  
J. A. Scott
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document