scholarly journals Schur function expansions and the Rational Shuffle Theorem

2020 ◽  
Vol 175 ◽  
pp. 105272
Author(s):  
Dun Qiu ◽  
Jeffrey Remmel
Keyword(s):  
1999 ◽  
Vol 08 (05) ◽  
pp. 461-483
Author(s):  
SEIYA NISHIYAMA

First-order approximation of the number-projected (NP) SO(2N) Tamm-Dancoff (TD) equation is developed to describe ground and excited states of superconducting fermion systems. We start from an NP Hartree-Bogoliubov (HB) wave function. The NP SO(2N) TD expansion is generated by quasi-particle pair excitations from the degenerate geminals in the number-projected HB wave function. The Schrödinger equation is cast into the NP SO(2N) TD equation by the variation principle. We approximate it up to first order. This approximate equation is reduced to a simpler form by the Schur function of group characters which has a close connection with the soliton theory on the group manifold.


2017 ◽  
Vol 69 (1) ◽  
pp. 21-53 ◽  
Author(s):  
Darij Grinberg

AbstractThe dual immaculate functions are a basis of the ring QSym of quasisymmetric functions and form one of the most natural analogues of the Schur functions. The dual immaculate function corresponding to a composition is a weighted generating function for immaculate tableaux in the same way as a Schur function is for semistandard Young tableaux; an immaculate tableau is defined similarly to a semistandard Young tableau, but the shape is a composition rather than a partition, and only the first column is required to strictly increase (whereas the other columns can be arbitrary, but each row has to weakly increase). Dual immaculate functions were introduced by Berg, Bergeron, Saliola, Serrano, and Zabrocki in arXiv:1208.5191, and have since been found to possess numerous nontrivial properties.In this note, we prove a conjecture of M. Zabrocki that provides an alternative construction for the dual immaculate functions in terms of certain “vertex operators”. The proof uses a dendriform structure on the ring QSym; we discuss the relation of this structure to known dendriformstructures on the combinatorial Hopf algebras FQSym andWQSym.


10.37236/534 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
A. M. Hamel ◽  
R. C. King

A recent paper of the present authors provides extensions to two classical determinantal results of Bressoud and Wei, and of Koike. The proofs in that paper were algebraic. The present paper contains combinatorial lattice path proofs.


10.37236/7557 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Seung-Il Choi ◽  
Jae-Hoon Kwon

We give a new characterization of Littlewood-Richardson-Stembridge tableaux for Schur $P$-functions by using the theory of $\mathfrak{q}(n)$-crystals. We also give alternate proofs of the Schur $P$-expansion of a skew Schur function due to Ardila and Serrano, and the Schur expansion of a Schur $P$-function due to Stembridge using the associated crystal structures.


10.37236/4971 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Angèle M. Hamel ◽  
Ronald C. King

A recent paper of Bump, McNamara and Nakasuji introduced a factorial version of Tokuyama's identity, expressing the partition function of  six vertex model as the product of a $t$-deformed Vandermonde and a Schur function. Here we provide an extension of their result by exploiting the language of primed shifted tableaux, with its proof based on the use of non-interesecting lattice paths.


10.37236/4139 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Carolina Benedetti ◽  
Nantel Bergeron

The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood combinatorially from the multiplication in the space of dual $k$-Schur functions. Using earlier work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs. Schur side, we study the poset given by the Bergeron-Sottile's $r$-Bruhat order, along with certain operators associated to this order. Then, we connect this poset with a graph on dual $k$-Schur functions given by studying the affine grassmannian order of  Lam-Lapointe-Morse-Shimozono. Also, we define operators associated to the graph on dual $k$-Schur functions which are analogous to the ones given for the Schubert vs. Schur problem. This is the first step of our more general program of showing combinatorially  the positivity of the multiplication of a dual $k$-Schur function by a Schur function.


10.37236/7387 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Anna Stokke

The classical Pieri formula gives a combinatorial rule for decomposing the product of a Schur function and a complete homogeneous symmetric polynomial as a linear combination of Schur functions with integer coefficients. We give a Pieri rule for describing the product of an orthosymplectic character and an orthosymplectic character arising from a one-row partition. We establish that the orthosymplectic Pieri rule coincides with Sundaram's Pieri rule for symplectic characters and that orthosymplectic characters and symplectic characters obey the same product rule. 


2020 ◽  
Vol 24 (1) ◽  
pp. 95-108
Author(s):  
O. Pechenik
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document