schubert polynomial
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 383 ◽  
pp. 107669
Author(s):  
Anshul Adve ◽  
Colleen Robichaux ◽  
Alexander Yong

Author(s):  
Alex Fink ◽  
Karola Mészáros ◽  
Avery St. Dizier

Abstract We prove that if $$\sigma \in S_m$$ σ ∈ S m is a pattern of $$w \in S_n$$ w ∈ S n , then we can express the Schubert polynomial $$\mathfrak {S}_w$$ S w as a monomial times $$\mathfrak {S}_\sigma $$ S σ (in reindexed variables) plus a polynomial with nonnegative coefficients. This implies that the set of permutations whose Schubert polynomials have all their coefficients equal to either 0 or 1 is closed under pattern containment. Using Magyar’s orthodontia, we characterize this class by a list of twelve avoided patterns. We also give other equivalent conditions on $$\mathfrak {S}_w$$ S w being zero-one. In this case, the Schubert polynomial $$\mathfrak {S}_w$$ S w is equal to the integer point transform of a generalized permutahedron.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Angèle M. Hamel ◽  
Ronald C. King

International audience In this paper we introduce factorial characters for the classical groups and derive a number of central results. Classically, the factorial Schur function plays a fundamental role in traditional symmetric function theory and also in Schubert polynomial theory. Here we develop a parallel theory for the classical groups, offering combinatorial definitions of the factorial characters for the symplectic and orthogonal groups, and further establish flagged factorial Jacobi-Trudi identities and factorial Tokuyama identities, providing proofs in the symplectic case. These identities are established by manipulating determinants through the use of certain recurrence relations and by using lattice paths.


10.37236/4139 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Carolina Benedetti ◽  
Nantel Bergeron

The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood combinatorially from the multiplication in the space of dual $k$-Schur functions. Using earlier work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs. Schur side, we study the poset given by the Bergeron-Sottile's $r$-Bruhat order, along with certain operators associated to this order. Then, we connect this poset with a graph on dual $k$-Schur functions given by studying the affine grassmannian order of  Lam-Lapointe-Morse-Shimozono. Also, we define operators associated to the graph on dual $k$-Schur functions which are analogous to the ones given for the Schubert vs. Schur problem. This is the first step of our more general program of showing combinatorially  the positivity of the multiplication of a dual $k$-Schur function by a Schur function.


10.37236/3659 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Karola Mészáros ◽  
Greta Panova ◽  
Alexander Postnikov

We study multiplication of any Schubert polynomial $\mathfrak{S}_w$ by a Schur polynomial $s_{\lambda}$ (the Schubert polynomial of a Grassmannian permutation) and the expansion of this product in the ring of Schubert polynomials. We derive explicit nonnegative combinatorial expressions for the expansion coefficients for certain special partitions $\lambda$, including hooks and the $2\times 2$ box. We also prove combinatorially the existence of such nonnegative expansion when the Young diagram of $\lambda$ is a hook plus a box at the $(2,2)$ corner. We achieve this by evaluating Schubert polynomials at the Dunkl elements of the Fomin-Kirillov algebra and proving special cases of the nonnegativity conjecture of Fomin and Kirillov.This approach works in the more general setup of the (small) quantum cohomology ring of the complex flag manifold and the corresponding (3-point) Gromov-Witten invariants. We provide an algebro-combinatorial proof of the nonnegativity of the Gromov-Witten invariants in these cases, and present combinatorial expressions for these coefficients.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Andrew Morrison

International audience We expose a rule for multiplying a general Schubert polynomial with a power sum polynomial in $k$ variables. A signed sum over cyclic permutations replaces the signed sum over rim hooks in the classical Murgnahan-Nakayama rule. In the intersection theory of flag manifolds this computes all intersections of Schubert cycles with tautological classes coming from the Chern character. We also discuss extensions of this rule to small quantum cohomology. Nous écrivons une formule pour multiplier les polynômes de Schubert avec les sommes de Newton. Une somme signée de permutations cycliques remplace la somme signée de rubans dans la formule classique de Murgnahan-Nakayama. Nous obtenons donc des relations dans l’anneau de Chow de la variété de drapeaux. Nous discutons également des extensions de cette formule en cohomologie quantique.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Nan Li

International audience We study the problem of expanding the product of two Stanley symmetric functions $F_w·F_u$ into Stanley symmetric functions in some natural way. Our approach is to consider a Stanley symmetric function as a stabilized Schubert polynomial $F_w=\lim _n→∞\mathfrak{S}_{1^n×w}$, and study the behavior of the expansion of $\mathfrak{S} _{1^n×w}·\mathfrak{S} _{1^n×u}$ into Schubert polynomials, as $n$ increases. We prove that this expansion stabilizes and thus we get a natural expansion for the product of two Stanley symmetric functions. In the case when one permutation is Grassmannian, we have a better understanding of this stability. Nous étudions le problème de développement du produit de deux fonctions symétriques de Stanley $F_w·F_u$ en fonctions symétriques de Stanley de façon naturelle. Notre méthode consiste à considérer une fonction symétrique de Stanley comme un polynôme du Schubert stabilisè $F_w=\lim _n→∞\mathfrak{S}_{1^n×w}$, et à étudier le comportement de développement de $\mathfrak{S} _{1^n×w}·\mathfrak{S} _{1^n×u}$ en polynômes de Schubert lorsque $n$ augmente. Nous prouvons que cette développement se stabilise et donc nous obtenons une développement naturelle pour le produit de deux fonctions symétriques de Stanley. Dans le cas où l'une des permutations est Grassmannienne, nous avons une meilleure compréhension de cette stabilité.


1999 ◽  
Vol 09 (03n04) ◽  
pp. 385-404
Author(s):  
ANATOL N. KIRILLOV

We introduce the quantum multi–Schur functions, quantum factorial Schur functions and quantum Macdonald polynomials. We prove that for restricted vexillary permutations, the quantum double Schubert polynomial coincides with some quantum multi-Schur function and prove a quantum analog of the Nägelsbach–Kostka and Jacobi–Trudi formulae for the quantum double Schubert polynomials in the case of Grassmannian permutations. We prove also an analog of the Giambelli and the Billey–Jockusch–Stanley formula for quantum Schubert polynomials. Finally we formulate two conjectures about the structure of quantum double and quantum Schubert polynomials for 321–avoiding permutations.


Sign in / Sign up

Export Citation Format

Share Document