First-row transition metal compounds for aqueous metal ion batteries

Author(s):  
Mengmeng Zhou ◽  
Xinjun Huang ◽  
Xiaomeng Tian ◽  
Baohua Jia ◽  
Hongge Pan ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5541
Author(s):  
Daniel Koch ◽  
Mohamed Chaker ◽  
Manabu Ihara ◽  
Sergei Manzhos

Description of redox reactions is critically important for understanding and rational design of materials for electrochemical technologies, including metal-ion batteries, catalytic surfaces, or redox-flow cells. Most of these technologies utilize redox-active transition metal compounds due to their rich chemistry and their beneficial physical and chemical properties for these types of applications. A century since its introduction, the concept of formal oxidation states (FOS) is still widely used for rationalization of the mechanisms of redox reactions, but there exists a well-documented discrepancy between FOS and the electron density-derived charge states of transition metal ions in their bulk and molecular compounds. We summarize our findings and those of others which suggest that density-driven descriptors are, in certain cases, better suited to characterize the mechanism of redox reactions, especially when anion redox is involved, which is the blind spot of the FOS ansatz.


Author(s):  
Daniel Koch ◽  
Mohamed Chaker ◽  
Manabu Ihara ◽  
Sergei Manzhos

Description of redox reactions is critically important for understanding and rational design of materials for electrochemical technologies including metal-ion batteries, catalytic surfaces, or redox-flow cells. Most of these technologies utilize redox-active transition metal compounds due to their rich chemistry and their beneficial physical and chemical properties for these types of applications. A century since its introduction, the concept of formal oxidation states (FOS) is still widely used for rationalization of the mechanisms of redox reactions, but there exists a well-documented discrepancy between FOS and the electron density-derived charge states of transition metal ions in their bulk and molecular compounds. We summarize our findings and those of others which suggest that density-driven descriptors are in certain cases better suited to characterize the mechanism of redox reactions, especially when anion redox is involved, which is the blind spot of the FOS ansatz.


1980 ◽  
Vol 34 (1) ◽  
pp. 45-50 ◽  
Author(s):  
A.Nørlund Christensen ◽  
S.E. Rasmussen ◽  
G. Thirup

Sign in / Sign up

Export Citation Format

Share Document