and tungsten
Recently Published Documents


TOTAL DOCUMENTS

4970
(FIVE YEARS 315)

H-INDEX

97
(FIVE YEARS 11)

Author(s):  
Byoungsu Ko ◽  
Ji-Yeon Chae ◽  
Trevon Badloe ◽  
Hongyoon Kim ◽  
Soo-Jung Kim ◽  
...  

2022 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Richard Arthur ◽  
Sebastian Antonczyk ◽  
Sandra Off ◽  
Paul A. Scherer

Lignocellulosic residues, such as straw, are currently considered as candidates for biogas production. Therefore, straw fermentations were performed to quantitatively estimate methane yields and cell counts, as well as to qualitatively determine the microbiome. Six fully automated, continuously stirred biogas reactors were used: three mesophilic (41 °C) and three thermophilic (58 °C). They were fed every 8 h with milled wheat straw suspension in a defined, buffered salt solution, called ‘synthetic manure’. Total reflection X-ray fluorescence spectrometry analyses showed nickel and tungsten deficiency in the straw suspension. Supplementation of nickel and subsequently tungsten, or with an increasing combined dosage of both elements, resulted in a final concentration of approximately 0.1 mg/L active, dissolved tungsten ions, which caused an increase of the specific methane production, up to 63% under mesophilic and 31% under thermophilic conditions. That is the same optimal range for pure cultures of methanogens or bacteria found in literature. A simultaneous decrease of volatile fatty acids occurred. The Ni/W effect occurred with all three organic loading rates, being 4.5, 7.5, and 9.0 g volatile solids per litre and day, with a concomitant hydraulic retention time of 18, 10, or 8 days, respectively. A maximum specific methane production of 0.254 m3 CH4, under standard temperature and pressure per kg volatile solids (almost 90% degradation), was obtained. After the final supplementation of tungsten, the cell counts of methanogens increased by 300%, while the total microbial cell counts increased by only 3–62%. The mesophilic methanogenic microflora was shifted from the acetotrophic Methanosaeta to the hydrogenotrophic Methanoculleus (85%) by tungsten, whereas the H2-CO2-converter, Methanothermobacter, always dominated in the thermophilic fermenters.


Author(s):  
Б.Д. Лыгденов ◽  
М.А. Гурьев ◽  
С.Г. Иванов ◽  
Ц. Чжэн ◽  
А.М. Гурьев

The paper presents ways to increase the wear and corrosion resistance of steel parts by chemical and thermal treatment methods. Comprehensive studies of the structure and properties of St3 steel samples were carried out after simultaneous complex saturation with boron and nickel, boron and tungsten from saturating coatings based on boron carbide. Both compounds of these elements (oxides, carbides, borides) and pure metals were used as suppliers of nickel and tungsten. Studies have shown that multicomponent saturation processes make it possible to form a multiphase structure of a surface layer with a complex of useful properties. Moreover, by chemical-thermal treatment it is possible to obtain such a combination of properties of the hardened product, which cannot be obtained by other methods.


Author(s):  
Maria Grau-Perez ◽  
Maria J. Caballero-Mateos ◽  
Arce Domingo-Relloso ◽  
Ana Navas-Acien ◽  
Jose L. Gomez-Ariza ◽  
...  

Objective: Studies evaluating the association of metals with subclinical atherosclerosis are mostly limited to carotid arteries. We assessed individual and joint associations of nonessential metals exposure with subclinical atherosclerosis in 3 vascular territories. Approach and Results: One thousand eight hundred seventy-three Aragon Workers Health Study participants had urinary determinations of inorganic arsenic species, barium, cadmium, chromium, antimony, titanium, uranium, vanadium, and tungsten. Plaque presence in carotid and femoral arteries was determined by ultrasound. Coronary Agatston calcium score ≥1 was determined by computed tomography scan. Median arsenic, barium, cadmium, chromium, antimony, titanium, uranium, vanadium, and tungsten levels were 1.83, 1.98, 0.27, 1.18, 0.05, 9.8, 0.03, 0.66, and 0.23 μg/g creatinine, respectively. The adjusted odds ratio (95% CI) for subclinical atherosclerosis presence in at least one territory was 1.25 (1.03–1.51) for arsenic, 1.67 (1.22–2.29) for cadmium, and 1.26 (1.04–1.52) for titanium. These associations were driven by arsenic and cadmium in carotid, cadmium and titanium in femoral, and titanium in coronary territories and mostly remained after additional adjustment for the other relevant metals. Titanium, cadmium, and antimony also showed positive associations with alternative definitions of increased coronary calcium. Bayesian Kernel Machine Regression analysis simultaneously evaluating metal associations suggested an interaction between arsenic and the joint cadmium-titanium exposure. Conclusions: Our results support arsenic and cadmium and identify titanium and potentially antimony as atherosclerosis risk factors. Exposure reduction and mitigation interventions of these metals may decrease cardiovascular risk in individuals without clinical disease.


2021 ◽  
Vol 29 ◽  
pp. 101079
Author(s):  
Xuexi Zhang ◽  
Li Qiao ◽  
Hong Zhang ◽  
Weizhi Yao ◽  
Wenhao He ◽  
...  

2021 ◽  
pp. 163419
Author(s):  
Hanns Gietl ◽  
Takaaki Koyanagi ◽  
Xunxiang Hu ◽  
Makoto Fukuda ◽  
Akira Hasegawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document