A bromide-ligand ferrocene derivative redox species with high reversibility and electrochemical stability for aqueous redox flow batteries

2020 ◽  
Vol 869 ◽  
pp. 114131
Author(s):  
Sora Kim ◽  
Donghyeon Kim ◽  
Gyungmin Hwang ◽  
Joonhyeon Jeon
Molecules ◽  
2015 ◽  
Vol 20 (11) ◽  
pp. 20499-20517 ◽  
Author(s):  
Feng Pan ◽  
Qing Wang

Author(s):  
Hui Chen ◽  
Zhihui Niu ◽  
Jing Ye ◽  
Changkun Zhang ◽  
Xiaohong Zhang ◽  
...  

2020 ◽  
Author(s):  
wenda wu ◽  
Jian Luo ◽  
Fang Wang ◽  
Bing Yuan ◽  
Tianbiao Liu

Aqueous organic redox flow batteries (AORFBs) have become increasing attractive for scalable energy storage. However, it remains challenging to develop high voltage, powerful AORFBs because of the lack of catholytes with high redox potential. Herein, we report methyl viologen dibromide (<b>[MV]Br<sub>2</sub></b>) as a facile self-trapping, bipolar redox electrolyte material for pH neutral redox flow battery applications. The formation of the <b>[MV](Br<sub>3</sub>)<sub>2</sub></b> complex was computationally predicted and experimentally confirmed. The low solubility <b>[MV](Br<sub>3</sub>)<sub>2</sub></b> complex in the catholyte during the battery charge process not only mitigates the crossover of charged tribromide species (Br<sub>3</sub><sup>-</sup>) and addresses the toxicity concern of volatile bromine simultaneously. A 1.53 V bipolar MV/Br AORFB delivered outstanding battery performance at pH neutral conditions, specifically, 100% total capacity retention, 133 mW/cm<sup>2</sup> power density, and 60% energy efficiency at 40 mA/cm<sup>2</sup>.


Carbon ◽  
2013 ◽  
Vol 60 ◽  
pp. 280-288 ◽  
Author(s):  
Cristina Flox ◽  
Javier Rubio-García ◽  
Marcel Skoumal ◽  
Teresa Andreu ◽  
Juan Ramón Morante

Chem ◽  
2017 ◽  
Vol 3 (6) ◽  
pp. 961-978 ◽  
Author(s):  
Camden DeBruler ◽  
Bo Hu ◽  
Jared Moss ◽  
Xuan Liu ◽  
Jian Luo ◽  
...  

Author(s):  
Han-Wen Chou ◽  
Feng-Zhi Chang ◽  
Hwa-Jou Wei ◽  
Bhupendra Singh ◽  
Amornchai Arpornwichanop ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document