Coordinate activity of the quadratus lumborum posterior layer, lumbar multifidus, erector spinae, and gluteus medius during single-leg forward landing

2021 ◽  
Vol 61 ◽  
pp. 102605
Author(s):  
Tomoki Oshikawa ◽  
Gen Adachi ◽  
Hiroshi Akuzawa ◽  
Yu Okubo ◽  
Koji Kaneoka
Author(s):  
Seung-Min Baik ◽  
Heon-Seock Cynn ◽  
Chung-Hwi Yi ◽  
Ji-Hyun Lee ◽  
Jung-Hoon Choi ◽  
...  

BACKGROUND: The effectiveness of side-sling plank (SSP) exercises on trunk and hip muscle activation in subjects with gluteus medius (Gmed) weakness is unclear. OBJECTIVE: To quantify muscle activation of the rectus abdominis (RA), external oblique (EO), erector spinae (ES), lumbar multifidus (LM), Gmed, gluteus maximus (Gmax), and tensor fasciae latae (TFL) during SSP with three different hip rotations compared to side-lying hip abduction (SHA) exercise in subjects with Gmed weakness. METHODS: Twenty-two subjects with Gmed weakness were recruited. SHA and three types of SSP exercises were performed: SSP with neutral hip (SSP-N), hip lateral rotation (SSP-L), and hip medial rotation (SSP-M). Surface electromyography was used to measure the activation of the trunk and hip muscles. RESULTS: The trunk and hip muscles activations were generally significantly higher level during three SSP than SHA. SSP-M showed significantly lower EO activation while significantly higher ES and LM activation than SSP-L. Gmed activation was significantly higher during SSP-M than during SSP-L. TFL activation was significantly lower during SSP-M than during SSP-N and SSP-L. CONCLUSIONS: SSP could be prescribed for patients who have reduced Gmed strength after injuries. Especially, SSP-M could be applied for patients who have Gmed weakness with dominant TFL.


Spine ◽  
2020 ◽  
Vol 45 (20) ◽  
pp. E1319-E1325
Author(s):  
Anke Hofste ◽  
Remko Soer ◽  
Etto Salomons ◽  
Jan Peuscher ◽  
André Wolff ◽  
...  

2017 ◽  
Vol 16 (4) ◽  
pp. 271-278 ◽  
Author(s):  
Fahed Mehyar ◽  
Marcio Santos ◽  
Sara E. Wilson ◽  
Vincent S. Staggs ◽  
Neena K. Sharma

2019 ◽  
Vol 28 (7) ◽  
pp. 682-691 ◽  
Author(s):  
Kunal Bhanot ◽  
Navpreet Kaur ◽  
Lori Thein Brody ◽  
Jennifer Bridges ◽  
David C. Berry ◽  
...  

Context:Dynamic balance is a measure of core stability. Deficits in the dynamic balance have been related to injuries in the athletic populations. The Star Excursion Balance Test (SEBT) is suggested to measure and improve dynamic balance when used as a rehabilitative tool.Objective:To determine the electromyographic activity of the hip and the trunk muscles during the SEBT.Design:Descriptive.Setting:University campus.Participants:Twenty-two healthy adults (11 males and 11 females; 23.3 [3.8] y, 170.3 [7.6] cm, 67.8 [10.3] kg, and 15.1% [5.0%] body fat).Intervention:Surface electromyographic data were collected on 22 healthy adults of the erector spinae, external oblique, and rectus abdominis bilaterally, and gluteus medius and gluteus maximus muscle of the stance leg. A 2-way repeated measures analysis of variance was used to determine the interaction between the percentage maximal voluntary isometric contraction (%MVIC) and the reach directions. The %MVIC for each muscle was compared across the 8 reach directions using the Sidak post hoc test withαat .05.Main Outcome Measures:%MVIC.Results:Significant differences were observed for all the 8 muscles. Highest electromyographic activity was found for the tested muscles in the following reach directions—ipsilateral external oblique (44.5% [38.4%]): anterolateral; contralateral external oblique (52.3% [40.8%]): medial; ipsilateral rectus abdominis (8% [6.6%]): anterior; contralateral rectus abdominis (8% [5.3%]): anteromedial; ipsilateral erector spinae (46.4% [20.2%]): posterolateral; contralateral erector spinae (33.5% [11.3%]): posteromedial; gluteus maximus (27.4% [11.7%]): posterior; and gluteus medius (54.6% [26.1%]): medial direction.Conclusions:Trunk and hip muscle activation was direction dependent during the SEBT. This information can be used during rehabilitation of the hip and the trunk muscles.


2020 ◽  
Vol 4 (02) ◽  
pp. E59-E66
Author(s):  
Roland van den Tillaar ◽  
Stian Larsen

AbstractThe purpose of the study was to compare kinematics and muscle activity between two variations of unilateral squats under different stability conditions. Twelve male volunteers (age: 23±5 years, mass: 80±17 kg, height: 1.81±0.11 m, strength-training experience: 4.3±1.9 years) performed four repetitions with the same external load (≈4RM). Two variations (with the non-stance leg forwards vs. backwards) were performed in a Smith-machine and free-weight condition. The variables were barbell velocity, lifting time and surface electromyography activity of the lower extremity and trunk muscles during the descending and ascending phase. The main findings were 1) peak force was higher when performing the unilateral squats in the Smith machine; 2) peak ascending barbell velocity increased from repetition 3–4 with free weight; and 3) muscle activity from the rectus femoris, vastus lateral, biceps femoris, gluteus medius, and erector spinae increased with repetitions, whereas gluteus, and medial vastus and shank muscles were affected by the conditions. It was concluded that more peak force could be produced because of increased stability. However, peak barbell velocity increased from repetition to repetition in free-weight unilateral squats, which was probably because the participants grew more comfortable. Furthermore, increased instability causes more gluteus and vastus medial activation and foot variations mainly affected the calf muscles.


Author(s):  
José M. Oliva-Lozano ◽  
José M. Muyor

The aim of this study was to systematically review the current literature on the electromyographic (EMG) activity of six core muscles (the rectus abdominis, the internal and external oblique, the transversus abdominis, the lumbar multifidus, and the erector spinae) during core physical fitness exercises in healthy adults. A systematic review of the literature was conducted on the Cochrane, EBSCO, PubMed, Scopus, and Web of Science electronic databases for studies from January 2012 to March 2020. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were used. The inclusion criteria were as follows: (a) the full text available in English; (b) a cross-sectional or longitudinal (experimental or cohorts) study design; (c) the reporting of electromyographic activity as a percentage of maximum voluntary contraction (% MVIC), millivolts or microvolts; (d) an analysis of the rectus abdominis (RA), transversus abdominis (TA), lumbar multifidus (MUL), erector spinae (ES), and the internal (IO) or external oblique (EO); (e) an analysis of physical fitness exercises for core training; and (f) healthy adult participants. The main findings indicate that the greatest activity of the RA, EO, and ES muscles was found in free-weight exercises. The greatest IO activity was observed in core stability exercises, while traditional exercises showed the greatest MUL activation. However, a lack of research regarding TA activation during core physical fitness exercises was revealed, in addition to a lack of consistency between the studies when applying methods to measure EMG activity.


PM&R ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 694-702 ◽  
Author(s):  
Peemongkon Wattananon ◽  
Sheri P. Silfies ◽  
Jarugool Tretriluxana ◽  
Wattana Jalayondeja

Sign in / Sign up

Export Citation Format

Share Document