scholarly journals Melting heat transfer in boundary layer stagnation-point flow of nanofluid toward a stretching sheet with induced magnetic field

2016 ◽  
Vol 19 (1) ◽  
pp. 313-321 ◽  
Author(s):  
B.J. Gireesha ◽  
B. Mahanthesh ◽  
I.S. Shivakumara ◽  
K.M. Eshwarappa
Author(s):  
O.K. Koriko ◽  
A.J. Omowaye ◽  
Isaac Lare Animasaun ◽  
Mayowa E. Bamisaye

In this article, the problem of a non-Newtonian fluid (micropolar) flow over a horizontal melting surface in the presence of internal heat source and dual stretching (i.e. at the wall and at the free stream) is presented. Since the magnetic-Reynold of the flow is substantial, the influence of induced magnetic field is properly accounted in the governing equation. The viscosity and thermal conductivity of the micropolar fluid are considered to vary linearly with temperature. Classical models of these thermophysical properties were modified to suit the case of melting heat transfer. A similarity transformation is applied to reduce the governing partial differential equation to coupled ordinary differential equation corresponding to dimensionless momentum, angular momentum, energy and induced magnetic field equation. These equations along with the boundary conditions are solved numerically using shooting method along with Runge-Kutta-Gill method together with quadratic interpolation. The results of the present study indicate that due to the formation of boundary layer on melting surface (region of low heat energy) in the presence of induced magnetic field, space and temperature dependent internal heat generation enhances the heat transfer rate.


2013 ◽  
Vol 17 (3) ◽  
pp. 865-875 ◽  
Author(s):  
Tasawar Hayat ◽  
Zahid Iqbal ◽  
Meraj Mustafa ◽  
Awatif Hendi

An analysis has been carried out for the characteristics of melting heat transfer in the boundary layer flow of third grade fluid in a region of stagnation point past a stretching sheet. The relevant partial differential equations are reduced into ordinary differential system by suitable transformations. The series solutions are developed by homotopy analysis method (HAM). It is revealed that an increase in the melting parameter (M ) decreases the velocity and the temperature (? ). An increase in the third grade parameter (? ) increases the velocity and the boundary layer thickness. The present results are also compared with the previous studies.


Sign in / Sign up

Export Citation Format

Share Document