newtonian fluid
Recently Published Documents


TOTAL DOCUMENTS

2716
(FIVE YEARS 531)

H-INDEX

66
(FIVE YEARS 11)

Author(s):  
V. I. Baikov ◽  
A. A. Kovalevskaya ◽  
A. D. Chorny

A fluid withdrawn by a moving inclined surface with account for the near-wall slip effect is analyzed theoretically. A non-Newtonian fluid task is stated in general form. The solving of this task enables revealing the basic physical principles and mechanisms of the process over the entire withdrawal velocity range realized in practice. The case of withdrawing a finite yield stress viscoplastic fluid is considered.


2021 ◽  
Author(s):  
C. Fernandes ◽  
S. A. Faroughi ◽  
R. Ribeiro ◽  
A. Isabel ◽  
G. H. McKinley

Abstract Accurately resolving the coupled momentum transfer between the liquid and solid phases of complex fluids is a fundamental problem in multiphase transport processes, such as hydraulic fracture operations. Specifically we need to characterize the dependence of the normalized average fluid-particle force < F > on the volume fraction of the dispersed solid phase and on the rheology of the complex fluid matrix, parameterized through the Weissenberg number Wi measuring the relative magnitude of elastic to viscous stresses in the fluid. Here we use direct numerical simulations (DNS) to study the creeping flow (Re << 1) of viscoelastic fluids through static random arrays of monodisperse spherical particles using a finite volume Navier-Stokes/Cauchy momentum solver. The numerical study consists of N = 150 different systems, in which the normalized average fluid-particle force <F> is obtained as a function of the volume fraction φ (0 < φ ≤ 0.2) of the dispersed solid phase and the Weissenberg number Wi (0 ≤ Wi ≤ 4). From these predictions a closure law < F >( Wi,φ ) for the drag force is derived for the quasi-linear Oldroyd-B viscoelastic fluid model (with fixed retardation ratio β = 0.5) which is, on average, within 5.7% of the DNS results. Additionally, a flow solver able to couple Eulerian and Lagrangian phases (in which the particulate phase is modeled by the discrete particle method (DPM)) is developed, which incorporates the viscoelastic nature of the continuum phase and the closed-form drag law. Two case studies were simulated using this solver, in order to assess the accuracy and robustness of the newly-developed approach for handling particle-laden viscoelastic flow configurations with O (10 5 − 10 6 ) rigid spheres that are representative of hydraulic fracture operations. Three-dimensional settling processes in a Newtonian fluid and in a quasi-linear Oldroyd-B viscoelastic fluid are both investigated using a rectangular channel and an annular pipe domain. Good agreement is obtained for the particle distribution measured in a Newtonian fluid, when comparing numerical results with experimental data. For the cases in which the continuous fluid phase is viscoelastic we compute the evolution in the velocity fields and predicted particle distributions are presented at different elasticity numbers 0 ≤ El ≤ 30 (where El = Wi/Re ) and for different suspension particle volume fractions.


2021 ◽  
Vol 12 (4) ◽  
pp. 114
Author(s):  
Gökhan Durmuş ◽  
Sefa Ekinci

In regional studies conducted by the Law Enforcement Agency and the Armed Forces within the scope of counter-terrorism activities, to ensure peace and security throughout the country and for the police and military personnel to provide security services, the need to produce different solutions has arisen in the face of attacks on the security points established at many important points, especially at the entrance and exit points of the cities. In this context, by changing the direction and angle of the wall types made of aerated concrete used in construction techniques, 7 variations were tested on these wall types with materials formed with adhesive mortar+plaster, monolithic elastomer polyurea, and non-Newtonian fluid, and the strength of these materials were tested with BR6 and BR7 bullets. The main purpose of this study was to determine the most suitable material in terms of security parameters in the shortest time and at a low cost and to create a reliable structure for security cabins. At the end of the study, the best results were obtained with the shots made on the narrow surface of the aerated concrete and the shots made on the platform formed with non-Newtonian fluid.


2021 ◽  
Vol 43 (4) ◽  
pp. 615-623
Author(s):  
M. Kouider ◽  
Z. Djallel ◽  
Y. Abdelkader ◽  
K. Sahraoui

Sign in / Sign up

Export Citation Format

Share Document