Dynamic Survival Bias in Optimal Stopping Problems

2021 ◽  
pp. 105286
Author(s):  
Wanyi Chen
1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


2014 ◽  
Vol 51 (03) ◽  
pp. 818-836 ◽  
Author(s):  
Luis H. R. Alvarez ◽  
Pekka Matomäki

We consider a class of optimal stopping problems involving both the running maximum as well as the prevailing state of a linear diffusion. Instead of tackling the problem directly via the standard free boundary approach, we take an alternative route and present a parameterized family of standard stopping problems of the underlying diffusion. We apply this family to delineate circumstances under which the original problem admits a unique, well-defined solution. We then develop a discretized approach resulting in a numerical algorithm for solving the considered class of stopping problems. We illustrate the use of the algorithm in both a geometric Brownian motion and a mean reverting diffusion setting.


2017 ◽  
Vol 54 (3) ◽  
pp. 963-969 ◽  
Author(s):  
Vadim Arkin ◽  
Alexander Slastnikov

Abstract We study a problem when the optimal stopping for a one-dimensional diffusion process is generated by a threshold strategy. Namely, we give necessary and sufficient conditions (on the diffusion process and the payoff function) under which a stopping set has a threshold structure.


2007 ◽  
Vol 44 (01) ◽  
pp. 181-198 ◽  
Author(s):  
Stéphane Villeneuve

In this paper we investigate sufficient conditions that ensure the optimality of threshold strategies for optimal stopping problems with finite or perpetual maturities. Our result is based on a local-time argument that enables us to give an alternative proof of the smooth-fit principle. Moreover, we present a class of optimal stopping problems for which the propagation of convexity fails.


Sign in / Sign up

Export Citation Format

Share Document