On the threshold strategies in optimal stopping problems for diffusion processes

2017 ◽  
Vol 54 (3) ◽  
pp. 963-969 ◽  
Author(s):  
Vadim Arkin ◽  
Alexander Slastnikov

Abstract We study a problem when the optimal stopping for a one-dimensional diffusion process is generated by a threshold strategy. Namely, we give necessary and sufficient conditions (on the diffusion process and the payoff function) under which a stopping set has a threshold structure.

2002 ◽  
Vol 12 (04) ◽  
pp. 709-737 ◽  
Author(s):  
A. BARBÉ ◽  
F. VON HAESELER

We generalize the concept of one-dimensional decimation invariant sequences, i.e. sequences which are invariant under a specific rescaling, to dimension N. After discussing the elementary properties of decimation-invariant sequences, we focus our interest on their periodicity. Necessary and sufficient conditions for the existence of periodic decimation invariant sequences are presented.


1977 ◽  
Vol 99 (2) ◽  
pp. 85-90 ◽  
Author(s):  
L. S. Bonderson

The system properties of passivity, losslessness, and reciprocity are defined and their necessary and sufficient conditions are derived for a class of linear one-dimensional multipower distributed systems. The utilization of power product pairs as state variables and the representation of the dynamics in first-order form allows results completely analogous to those for lumped-element systems.


2007 ◽  
Vol 44 (01) ◽  
pp. 181-198 ◽  
Author(s):  
Stéphane Villeneuve

In this paper we investigate sufficient conditions that ensure the optimality of threshold strategies for optimal stopping problems with finite or perpetual maturities. Our result is based on a local-time argument that enables us to give an alternative proof of the smooth-fit principle. Moreover, we present a class of optimal stopping problems for which the propagation of convexity fails.


2014 ◽  
Vol 51 (02) ◽  
pp. 492-511
Author(s):  
Martin Klimmek

Consider the classic infinite-horizon problem of stopping a one-dimensional diffusion to optimise between running and terminal rewards, and suppose that we are given a parametrised family of such problems. We provide a general theory of parameter dependence in infinite-horizon stopping problems for which threshold strategies are optimal. The crux of the approach is a supermodularity condition which guarantees that the family of problems is indexable by a set-valued map which we call the indifference map. This map is a natural generalisation of the allocation (Gittins) index, a classical quantity in the theory of dynamic allocation. Importantly, the notion of indexability leads to a framework for inverse optimal stopping problems.


Sign in / Sign up

Export Citation Format

Share Document