scholarly journals Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems

2013 ◽  
Vol 264 (1) ◽  
pp. 62-96 ◽  
Author(s):  
Denis Bonheure ◽  
Ederson Moreira dos Santos ◽  
Miguel Ramos
2019 ◽  
Vol 150 (4) ◽  
pp. 1737-1768 ◽  
Author(s):  
Djairo G. de Figueiredo ◽  
João Marcos do Ó ◽  
Jianjun Zhang

AbstractThe aim of this paper is to study Hamiltonian elliptic system of the form 0.1$$\left\{ {\matrix{ {-\Delta u = g(v)} & {{\rm in}\;\Omega,} \cr {-\Delta v = f(u)} & {{\rm in}\;\Omega,} \cr {u = 0,v = 0} & {{\rm on}\;\partial \Omega,} \cr } } \right.$$ where Ω ⊂ ℝ2 is a bounded domain. In the second place, we present existence results for the following stationary Schrödinger systems defined in the whole plane 0.2$$\left\{ {\matrix{ {-\Delta u + u = g(v)\;\;\;{\rm in}\;{\open R}^2,} \cr {-\Delta v + v = f(u)\;\;\;{\rm in}\;{\open R}^2.} \cr } } \right.$$We assume that the nonlinearities f, g have critical growth in the sense of Trudinger–Moser. By using a suitable variational framework based on the generalized Nehari manifold method, we obtain the existence of ground state solutions of both systems (0.1) and (0.2).


2014 ◽  
Vol 94 (7) ◽  
pp. 1380-1396 ◽  
Author(s):  
Jian Zhang ◽  
Xianhua Tang ◽  
Wen Zhang

Author(s):  
Jun Wang ◽  
Junxiang Xu ◽  
Fubao Zhang

This paper is concerned with the following semilinear elliptic equations of the formwhere ε is a small positive parameter, and where f and g denote superlinear and subcritical nonlinearity. Suppose that b(x) has at least one maximum. We prove that the system has a ground-state solution (ψε, φε) for all sufficiently small ε > 0. Moreover, we show that (ψε, φε) converges to the ground-state solution of the associated limit problem and concentrates to a maxima point of b(x) in certain sense, as ε → 0. Furthermore, we obtain sufficient conditions for nonexistence of ground-state solutions.


2010 ◽  
Vol 53 (2) ◽  
pp. 245-255 ◽  
Author(s):  
HAIYANG HE

AbstractWe consider in this paper the problem (1) where Ω is the unit ball in ℝN centred at the origin, 0 ≤ α < pN,β > 0, N ≥ 3. Suppose qϵ → q as ϵ → 0+ and qϵ, q satisfy, respectively, we investigate the asymptotic estimates of the ground-state solutions (uϵ, vϵ) of (1) as β → + ∞ with p, qϵ fixed. We also show the symmetry-breaking phenomenon with α, β fixed and qϵ → q as ϵ → 0+. In addition, the ground-state solution is non-radial provided that ϵ > 0 is small or β is large enough.


Sign in / Sign up

Export Citation Format

Share Document